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Chapter 1

Introduction

The term "oxide materials" is closely connected to "oxide ceramics" which represent a type

of material used to decorate pottery. An oxide is a compound in which one of the component

is oxygen. Due to the high electronegativity oxygen forms stable chemical bonds with almost

all elements to form the corresponding oxides. Metal oxides containing anion oxygen and

metal cation, are fascinating group of materials. In this thesis we have focused on studying

transition metal oxides (TMO’s). Transition metal oxides are those for which metal cations

are transition metal cations, the d-block elements in periodic table, characterized by localized

nature of d electrons and the associated strong correlation effect.

1.1 Transition metal oxides

TMO’s have attracted attention of physicists and chemists due to their wide range of elec-

tronic, chemical and metallic properties. Strong correlation effect between TM d-electrons

brings in novel and unusual aspect in these properties. Interplay between the charge, spin

and orbital degrees of freedom of electrons together with strong correlation produces many

1
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Figure 1.1 Periodic table with d-block elements only (taken from [1]).

complex phenomena like magnetic phase transitions, metal-insulator transition, large magne-

toresistance, magnetodielectric effect, multiferroicity etc. In TMO’s the Coulomb repulsion

between d electrons tries to localize the TM d electrons at lattice sites and hybridization be-

tween TM d and oxygen p states tend to delocalize the electrons. The balance between the two

makes transition metal-oxides (TMO’s) excellent candidates with tunable electronic proper-

ties to arrive at a microscopic understanding of influence of various driving forces.

In the present thesis we have used first-principles based density functional theory (DFT) (this

will be discussed in the next chapter) to study electronic structure of transition metal-oxides.

In the first-principles based methods we need the information only about the crystal structure

of the compound. Such a parameter free approach is capable of capturing the chemistry of

compounds accurately. In this thesis we have studied a few examples in 3d and 4d -TMO’s

where interplay of spin, charge, orbital degrees of freedom together with correlation effect is

found to give rise to interesting effects, e.g., (a) magnetism in a multiferroic spin compound

YMn2O5, (b) interplay of correlation and spin-orbit coupling in a double perovskite compound

La2CoMnO6, (c) contrasting magnetic behavior of double perovskite compounds Sr2CrSbO6

and Ca2CrSbO6, (d) metal-insulator transition in itinerant electron system Hg2Ru2O7.
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The first three examples belong to the class of 3d TMO’s while the last one belongs to the

class of 4d TMO’s. In the following we briefly discuss the comparison between the 3d TMO’s

and 4d TMO’s.

Figure 1.2 Schematic diagram to show comparison of shape of 3d and 4d/5d states
in transition metal oxides. While TM 3d has narrow band TM 4d/5d has wider band
in TMO’s.

1.1.1 3d transition metal oxides

3d transition-metal oxides, like copper based high-temperature superconductors, manganites

with colossal magnetoresistive properties, etc., are among the most intensely studied com-

pounds in condensed matter physics [2, 3, 4, 5, 6, 7]. They exhibit a vast range of electrical

and magnetic properties like insulating, semiconducting, metallic, superconducting, ferromag-

netic, ferrimagnetic and antiferromagnetic [8]. The physical properties are found to be sen-

sitive to the change in external conditions like temperature or pressure. The extend of 3d

wavefunctions of TM ions is in general small, leading to small bandwidth of TM d domi-
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Table 1.1 The list of various 3d transition metal oxides with various kinds of inter-
esting magnetic and electric properties.

Properties Compounds References

Large gap insulators NiO, Bi4Ti3O12, La2CuO4, MnO [9], [10], [11], [12]

Metals V2O5, Ti2O3, Ba2FeMoO6, Sr2FeMoO6 [13], [14], [15], [16]

High-Tc superconductors YBa2Cu3O7, La2−xSrxCuO4 [17], [18]

Ferromagnetic YbTiO3, HoTi3, LaCaMnO3 [19], [20]

Antiferromagnetic NiO, Cr2O3, CaCo3V4O12 [21], [22], [23]

Multiferroics Ni3V2O8, TbMnO3, CoCr2O4, MnWO4 [24], [25], [26], [27]

nated states which is separated from the O p dominated states in case of compounds with large

charge transfer, as shown in left side of Fig. 1.2. The physics is nominally dominated by three

energy scales, the charge transfer energy ∆, which is the energy difference between metal d

and O p states, the hopping connecting metal and O sites, tpd , and electron-electron correla-

tion within TM d manifold, Udd . Examples of various 3d transition metal oxides with various

different ground state properties are given in the table 1.1.

1.1.2 4d/5d transition metal oxides

In case of 4d or 5d TMO’s the band widths of TM d states are much wider compared to that of

3d TMO’s giving rise to a situation shown in right hand side of Fig. 1.2. The other important

difference between 3d and 4d TMO’s is the enhanced importance of spin-orbit coupling in

4d TMO’s due to the presence of 4d series elements. Fascinating materials displaying new

phenomena, including materials with potential technological applications, has recently into

the focus of research due to the role of the spin-orbit interaction. In the spin-orbit interaction
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there is coupling between the electron’s intrinsic spin and its orbital angular momentum. Usu-

ally the spin-orbit interaction is taken as weak perturbation because its effect on the electronic

properties of materials is minimal, but becomes important for heavy elements. The Hamilto-

nian describing the spin-orbit effect is written as [28]:

HSO =
Zα2

2
1
r3 L̂.Ŝ (1.1)

Using the simplified form of Eq.1.1 the expression for energy due to spin-orbit effect can be

written as,

ESO =
Z4

2(137)2n3
[ j( j+1)− l(l +1)− s(s+1)]

2l(l +1/2)(l +1)
(1.2)

where ’Z’ is atomic number and ’n’ is the principal quantum number. j is total angular momen-

tum quantum number, l is orbital angular momentum quantum number and s is spin angular

momentum quantum number. Therefore the spin-orbit coupling effect is proportional to the

atomic number but inversely proportional to principal quantum number. This indicates that

spin orbit-coupling effect is larger for atoms that are further down a particular column of the

periodic table. 4d or 5d transition-metal elements (heavier atoms) are therefore good candi-

date to show larger spin-orbit effect than 3d transition-metals. Spin-orbit interactions in 4d or

5d TMO’s are comparable in strength to the other interactions that determines the electronic

properties of matter. The resulting interaction out of competition between such equally strong

interactions give rise to new emergent properties of materials in 4d or 5d TMO’s. Also, 4d

orbitals are more extended than 3d orbitals in TMO’s. Therefore, correlation effect is expected

to be less important in such systems. Several theoretical studies have introduced new phases

of matter of 4d or 5d TMO’s like topological insulators (Pb1−xSnxTe)[29], Weyl semimet-

als (Y2Ir2O7)[30], thermally driven metal-insulator transition[31], quantum spin Hall-effect

(Na2IrO3)[32] etc. which are of academic as well as of technological interest.
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1.2 Brief description of various classes of materials

In this thesis we have studied few transition-metal oxides which unravels the physics of in-

terplay of spin, charge, orbital degrees of freedom of electrons in 3d and 4d transition-metal

oxides. We have studied (i) a complex spin system with general formula AMn2O5 (A being

any rare-earth cation) belonging to the class of multiferroic compounds, (ii) double perovskite

oxides which are fascinating group of materials with many interesting and rich physics and

(iii) pyrochlore compounds, the lattice of which provides frustration. In the following sec-

tions, we introduce various classes of materials studied in the thesis, in terms of their physical

properties and general crystal structure.

1.2.1 Multiferroics

The interplay between electricity and magnetism has always fascinated scientists and engi-

neers for centuries. The simultaneous presence of electric polarization and magnetization has

been discovered in a class of materials, called multiferroics [33]. The materials show presence

of both spontaneous magnetization and polarization. The word "ferroic" refers to a mate-

rial that adopts a spontaneous, switchable internal alignment of either spins or electric dipole

moment or strain. In case of ferromagnetic material there is alignment of spins that can be

switched using external magnetic field. In case of ferroelectrics there is alignment of elec-

tric dipole moments that can be switched using external electric field. In case of ferroelastics

there is alignment of strains that can be switched using external stress. Multiferroics are the

materials where more than one ferroic ordering exist in one phase. Usually in multiferroics
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both ferroelectricity and ferromagnetism coexist in one phase. The appealing aspect about

multiferroics from technological point of view is that magnetization may be controlled by the

conjugate field of electric polarization and electric polarization may be controlled by the con-

jugate field of magnetization, due to the coupling between magnetization and electric polar-

ization, an effect known as "magnetoelectric effect". Multiferroic properties have been found

in different classes of materials like, double perovskites ( Lu2MnCoO6 [34], Bi2FeMnO6 [35],

Bi2FeCrO6 [36]), spinels (FeV2O4 [37], CdV2O4 [38]), hexagonal perovskites AMnO3 (A=

Tb, Dy, Ho, Y)[[25, 39, 40, 41], AMn2O5 (A=Tb, Dy, Ho, Y) [[42], [43]]. The origin of mag-

netoelectric coupling in multiferroic compounds can be various, like, Dzyaloshinski-Moria

(DM) interactions as a result of weak spin-orbit coupling effect [25]. The manganite multi-

ferroic materials AMn2O5 (A=Y, Tb, Dy, Ho)[42] which will be the focus of our study, are

reported to have magnetoelectric coupling mediated by superexchange interaction, rather than

by spin-orbit interaction. For these compounds (AMn2O5), the magnetization is the primary

order parameter while the electric polarization is secondary order parameter. Understanding

of magnetism in these materials therefore forms a key role.

AMn2O5 compounds have orthorhombic unit cell. A general crystal structure of AMn2O5

compounds are shown in the figure 1.3. There are two inequivalent Mn ions with charge dis-

proportionate situation: Mn with square pyramidal environment has oxidation state 3+ and

Mn with octahedral environment has oxidation state 4+. The octahedra and square-pyramids

are connected by corner shared oxygen atoms. The octahedra share edges to form chains along

c axis. These materials have been studied since the 1960s because of their complex magnetic

structures. Recently, the materials are found to show spontaneous electrical polarization, the

onset of which occurs just below the antiferromagnetic (AFM) ordering temperature (TN)

[44, 45, 46, 47]. The magnitude of polarization is not as large as observed in typical ferro-

electric materials. Interest comes with the observation that the polarization is coupled to the
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Figure 1.3 General AMn2O5 crystal structure with unit cell projected onto ab-plane.
The octahedra Mn4+O6 share corner oxygens with Mn3+O5 square pyramid while
two Mn3+O5 square pyramids are connected by edge-shared oxygen atoms.

magnetic order in these compounds. Furthermore, these compounds show several phase tran-

sitions upon lowering of temperature which is believed to be due to the magnetic frustration

in the system. These compounds have been studied to understand the spin-phonon coupling

effect [48], coefficient of magnetoelectric coupling [49] and dielectric permittivity [50]. The

competing nature of magnetic interactions in these compounds give rise to commensurate

and incommensurate magnetic ground states which are energetically comparable. Neutron

diffraction study on these compounds revealed stabilization of complex magnetic structure

like transverse spiral spin structure propagating along the c-axis [51].

1.2.2 Double Perovskites AA′BB′O6

Perovskites have the general formula ABX3 where A represents large electropositive ion, B

represents small transition metal ion and X is either halide or oxygen ions. The double per-

ovskites have unit cell twice that of the perovskite, with general formula AA′BB′O6 , where

A, A′ may be similar or dissimilar ions and B, B′ are two transition metal ions. The large
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size and valence mismatch between the B and B′ site cations can drive ordering of ions at B

sublattice.

The crystallographic structure of a double perovskite compound is governed by the mismatch

Figure 1.4 Ideal ordered cubic double perovskite structure AA′BB′O6. A, A′ is any
rare-earth or alkaline-earth ion and B, B′ are transition metal ions.

between the radius occupied by the A cation and the space left inside the oxygen interstices.

Tolerance factor, f, as for perovskites, is used as a measure of such mismatch. The tolerance

factor in case of double perovskites involves two possible distances B−O and B′−O, so

f ≡ rA + rO√
2(〈rB〉+ rO)

(1.3)

where ri is the effective ionic radius of the ith atom (A,B,B′,O), where ’〈〉’ stands for the av-

erage of the ri for B and B′ ions. In case of ordered arrangement of B and B′ ions typically

rock-salt arrangement is observed, as shown in Fig. 1.4. It is an arrangement of corner-shared

BO6 and B′O6 octahedra that contains A cations in 12 coordinated sites. However, ordered

layered arrangement of B and B′ have been also observed [52]. For small valence and size

difference between B and B′ , the arrangement at B sublattice becomes random.

Double perovskites have attracted recent attention due to the interesting properties offered

by them. Many of the double perovskites are predicted to be "half-metals". Materials with

high spin-polarization of the conducting charge carriers are of great interest for spintron-

ics. An ideal material with 100% spin-polarization is called a half-metal. Interesting, the



10 Chapter 1 Introduction

Table 1.2 List of double perovskites with various electric and magnetic properties.

Properties Compounds References

Ferroelectric NaLaMnWO6 CaMnTi2O6, Ho2CuTiO6, PbBiZnNbO6 [60], [61], [62], [63]

Ferromagnetic Sr2FeMoO6, Ca2FeReO6, Sr2CrReO6 [16], [64], [65]

Antiferromagnetic Ba2PrRuO6, Ba2MnWO6 [66], [67]

Ferrimagnetic Ba2MnReO6, Bi2FeMoO6, Bi2MnMoO6 [68], [69]

Multiferroic Lu2MnCoO6, Bi2FeCrO6 [34], [36]

Superconductivity Sr2YRuO6 [70]

double perovskite series offer half-metallic compounds with transition temperature above

the room temperature, (Sr2FeMoO6 , Sr2CrWO6 ). Also the magnetodielctric effect [53]

(La2NiMnO6 )[54], colossal magnetoresistance [55] (La2CoMnO6 , Sr2CoMoO6 )[56] etc.

have been observed in double perovskite materials. Superconductivity in double perovskites

( Ba2YRu1xCuxO6 and Sr2YRu1xCuxO6 )[57] has been also reported. The double perovskites

which are based on combinations of 3d-4d/5d transition metals are of special relevance to the

presence of strong spin-orbit coupling effect, making them suitable for magneto-optic devices.

Ir based double perovskite compounds have been studied for spin-orbit driven physical effects

[58, 59]. A list of double perovskites with various electrical and magnetic properties is given

in the Table1.2.

1.2.3 Pyrochlore compounds A2B2O6O′

The A2B2O6O′ pyrochlore structure is network of A-O′ and B-O bonds, where A site is oc-

cupied by rare earth element and B site may be occupied by 3d, 4d or 5d transition metal

element. The O ions occupy two crystallographically nonequivalent positions. The larger



1.2 Brief description of various classes of materials 11

A cation has eight-fold coordination and smaller B cation has six-fold coordination(BO6 oc-

tahedra). Pyrochlore compounds prefer A3+ B4+ cation combination and sometimes A2+

B5+ cation combination. Each of the A and B sites form a three dimensional network of

corner-sharing tetrahedra. The pyrochlore structure can also be viewed as two isolated, but

interpenetrating three-dimensional frameworks of A2O′ atoms and BO6 octahedra, respec-

tively. The compounds with (3+, 4+) cations (Tl2Ru2O7[71], Bi2Ru2O7[72]) are mostly re-

ported while there exist compounds with (2+,5+) cations (Hg2Ru2O7[73]). Recently (1+,6+)

pyrochlore KOs2O6[74] have been also reported. This lattice shows geometrical frustration

and novel magnetic effects. There are various physical properties found in pyrochlore com-

pounds like electronic insulator La2Zr2O7[75], ionic conductors, mixed ionic and electronic

conductivity, spin ice system Dy2Ti2O7[76], spin glass system Y2Mo2O7[77], superconduc-

tivity Cd2Re2O7[78].

Figure 1.5 Unit cell of a Pyrochlore compound.
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1.3 Overview of Present Thesis

From the above discussion it is clear that TMO’s occurring in variety of crystal structures ex-

hibit various interesting physical and chemical properties which need microscopic understand-

ing. We have used first-principles based density functional theory to study such interesting

properties in TMO’s to achieve understanding at the microscopic level. With the advancement

in the computational techniques as well computer hardware, first-principles based calculation

has become key tool to understand the basic physics of real materials.

In the present thesis we have studied different classes of materials with different interesting

properties of TMO’s resulting from the interplay of charge, spin and orbital degrees of free-

dom as well as the correlation effect of TM d electrons. The brief summary of the contents of

the various chapters are presented in the following.

Chapter 2 : In this chapter we discuss the theoretical methods which are used in this thesis.

This includes brief description of the formulation of first-principles based density functional

theory (DFT). Also, we discuss various basis sets to solve the eigenvalue problem posed by

DFT. We discuss the beyond DFT correlation effect correction. We also discuss the first-

principles based methods to study lattice dynamics such as Density functional perturbation

theory (DFPT).

Chapter 3 : In this chapter we present our study on magnetic exchange interactions in a com-

plex spin system, a multiferroic compound (YMn2O5). Magnetism is the key player in the

compound that drives the ferroelectricity. By the construction of effective spin-Hamiltonian

we could successfully reproduce the measured magnon dispersion data. Exact diagonalization

method is used to solve the effective spin-Hamiltonian. The magnetic exchange interactions

were calculated from information of effective Mn-Mn hopping integrals and energy differ-

ences as obtained from first-principles based wannier function description of the Mn d bands.

Our study shows the importance of few magnetic exchange interactions in the magnetism of
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YMn2O5 which were neglected previously.

Chapter 4 : In this chapter, we discuss a double perovskite compound La2CoMnO6 which

shows unusual insulating state driven by Coulomb assisted spin-orbit coupling. Without cor-

relation and spin-orbit interaction the compound is a metal which is in contradiction with the

observed ground state. Our study shows that spin-orbit interaction with the help of Coulomb

correlation makes the insulating state possible in this compound. Another important point of

this compound is the magnetodielectric effect. We studied the magnetodielectric effect using

first-principles based method which uncovered evidence of spin-phonon coupling in the com-

pound.

Chapter 5 : In this chapter, we study the effect of non-magnetic A cation in the magnetism

of two double perovskite compounds Sr2CrSbO6 and Ca2CrSbO6. This study gives rise to

unusual concept that a non-magnetic A cation (Sr or Ca) may play an important role in the

magnetism of a TMO system. We also studied the origin of stabilization of antiferromag-

netism in the frustrated face centered cubic (FCC) lattice of Cr in the Sr2CrSbO6 compound.

Chapter 6 : In this chapter, we study the Ru d electron based ruthenate pyrocholre compound

Hg2Ru2O7 which is similar in crystal structure and magnetic behavior to another ruthenate

pyrocholre compound Tl2Ru2O7. Both compounds show metal to insulator transition upon

lowering of temperature. Our study reveals the contrasting localized and itinerant behavior of

Ru 4d electrons in Tl2Ru2O7 and Hg2Ru2O7, respectively. We provided explanation behind

this contrasting behavior which turned out to be differential covalency between Hg-Ru and

Tl-Ru. We also studied the insulating state in low temperature phase of Hg2Ru2O7.
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Chapter 2

Theoretical Background of Electronic

Structure Calculations

This chapter deals with the theoretical background of the computational methods used to study

various properties of crystalline materials discussed in this thesis.

2.1 Methods of Electronic Structure Calculation

2.1.1 Many-Body Hamiltonian

The behavior of real materials is determined by the fundamental particles - electrons and nu-

clei. Many of the properties, for example, optical and magnetic properties of materials are

determined by the electrons, which makes their study important. The theoretical understand-

ing of the electronic structure of matter is based on the quantum mechanics. So we can start

with the many-body Hamiltonian Ĥ of the system which can be solved to obtain the solutions

which give various properties of the material. The most general form of the Hamiltonian of

the system of Ne electrons and NP nuclei (neglecting relativistic effect, magnetic field, and

23
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quantum electrodynamics for simplicity) is given by,

Ĥ = − h̄2

2me

Ne

∑
i=1

∇
2
ri
−

NP

∑
I=1

h̄2

2MI
∇

2
RI
− 1

4πε0
∑

i,I=1

ZIe2

|RI− ri|
+

1
2

1
4πε0

∑
i> j

e2

|ri− rj|
+

1
4πε0

∑
I>J

ZIZJe2

|RI−RJ|
(2.1)

where me is the mass of an electron at ri and MI the mass of Ith ion at position RI. Z is the

atomic number of an ion. Summation over i, j runs over electrons whereas summation over I,J

runs over nuclei of the system.

First term in the Eq.(2.1) is the kinetic energy term which is sum of kinetic energies of in-

dividual electrons (e.g.,ith electron at ri), second term is sum of kinetic energies of individual

nuclei (e.g., Ith nucleus at RI). The fourth term represents potential energy term due to repul-

sive coulomb interaction among electrons (the factor
1
2

is included so that every interaction is

considered only once) while fourth term is potential energy term due to repulsive coulomb in-

teraction between nuclei. The third term represents potential energy due to attractive coulomb

interaction between negatively charged electrons and positively charged nuclei.

2.1.2 Born-Oppenheimer Approximation

Finding exact solution for the Hamiltonian Eq.(2.1) is difficult due to large number of degrees

of freedom involved and also coupled nature of various interacting terms. The first important

approximation in simplifying the many-body problem is Born-Oppenheimer approximation

[1]. As the mass MI of the nuclei are much greater than the mass me of electrons, nuclei move

much slower compared to electrons and electrons can be considered to be moving in the field

of nuclei which are apparently frozen with respect to the time scale of electrons. This approx-

imation is known as Adiabatic approximation or Born-Oppenheimer approximation. Within
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this approximation the second term in Eq.(2.1),kinetic energy of the nuclei, can be neglected

(due to the factor
1

MI
) and the last term in Eq.(2.1), the coulomb repulsion between nuclei,

can be taken as a constant. So the remaining terms in the Hamiltonian Ĥ are electronic terms

describing the motion of Ne electrons in the field of Np nuclei. The resultant electronic Hamil-

tonian is given by,

Ĥ =− h̄2

2me

Ne

∑
i=1

∇
2
ri
− 1

4πε0
∑

i,I=1

ZIe2

|RI− ri|
+

1
2

1
4πε0

∑
i> j

e2

|ri− rj|
+EMadelung (2.2)

Where EMadelung is the constant potential energy term coming from ion-ion interaction.

Even with this simplification solving the eigenvalue problem for the Hamiltonian Ĥ is an ex-

tremely difficult task due to the exchange and correlation among electrons. If two electrons

with same spin interchange positions, the wave function ψ(ri) must change sign. This property

is called "exchange". Furthermore, each electron is affected by the motion of other electron

which is known as "correlation" property. To solve the many-body systems with complicated

interactions among electrons, the next crucial approximation is the single electron approxima-

tion where electrons are considered as independent particles moving in the mean field created

by the other electrons and the nuclei. The systems where effect of exchange and correlation

plays important role such as high Tc superconductors etc. are not suitable to be described by

single-particle picture.

The single electron problem can be attacked with two possible approaches, (a) wave function

based approach and (b) density based approach.
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2.1.3 Single-Electron Picture

2.1.3.1 Wave Function Based Approach

Wave functions based method can be divided into two category; (a) semi-empirical method

and (b) ab initio method. In case of ab initio method two basic approaches are considered; (a)

"Hartree method" and (b)"Hartree-Fock method".

In Hartree approximation [2, 3, 4] each electron’s motion is described by single-electron or-

bital which does not depend on the instantaneous motion of the other electrons. Assuming

that electrons ignore each other the wave function ΨHP of the system can be written as

ΨHP(r1,r2,r3, ...,rNe) = ψ(r1)ψ(r2)ψ(r3)...ψ(rNe) (2.3)

which is known as Hartree product wavefunction with ψ(ri) being the one-electron wave

functions. Hartree approach leads to the one-electron Schrödinger equation for ψ(ri)

[
− h̄2

2me
∇

2 + v(r)+ e2
Ne

∑
j=1, j 6=i

∫ |ψ j(r′)|2

|r− r′|
dr′
]

ψi(r) = Eiψi(r) (2.4)

For an atom the potential v(r) =−Z
r

, where Z is the nuclear charge. In Hartree approximation

an electron in ith state is under the action of self-consistent field of all other electrons but ith

electron.

Although Hartree approximation works well for many systems but it has few shortcom-

ings; (a) the total wave-function violates the Pauli exclusion principle, and (b) since the

self-consistent potential acting on ith electron depends on ri, the functions ψi(ri) are non-

orthogonal. These shortcomings are eliminated by Hartree-Fock approximation [5] where

total wave-function is constructed as an antisymmetrized (A) product,

ΨHF(r1,r2,r3, ...,rNe) = A
Ne

∏
j=1

ψi(ri) (2.5)
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which automatically satisfies the Pauli exclusion principle. The wave-function can be rewrit-

ten in determinant format known as Slater determinant,

ΨHF(r1,r2,r3, ...,rNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) · · · ψ1(rNe)

ψ2(r1) ψ2(r2) · · · ψ2(rNe)

...
... . . . ...

ψNe(r1) ψNe(r2) · · · ψNe(rNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.6)

With the variational principle and antisymmetrized wave-function given by Eq.(2.6) resulting

Hartree-Fock (HF) equations are given by,

ĤHF
ψi(r)≡

[
− h̄2

2me
∇

2 + v(r)
]

ψi(r)

+ e2
Ne

∑
j=1

∫ dr′

|r− r′|
[
|ψ j(r′)|2ψi(r)−ψ

∗
j (r
′)ψi(r′)ψ j(r)

]
= Eiψi(r) (2.7)

These equations are nonlinear in ψi(r) which is different from ordinary Schrödinger equation

and it involves a non-local potential, the second term under the summation on right hand side

of Eq.(2.7), called Fock’s potential.

The fundamental drawback of Hartree-Fock formalism is that it ignores the electron-electron

correlation that may lead to large deviation from experimental results. A number of ap-

proaches have been devised to overcome the problem of missing correlation in HF method,

collectively called post Hartree-Fock methods [6, 7, 8]. Another important difficulty with HF

method is huge computational cost for calculating every single-electron wave-function. For

large and complex systems it involves exponential increase in computational cost.
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2.1.3.2 Density Based Approach (Density Functional Theory)

Another approach to solve problem of interacting electrons, is where instead of taking elec-

tronic wave-function as basic variables electron density is considered as basic variable. So-

lution of electronic structure is a many-body problem due to the fact that electrons interact

via attractive coulomb force with the stationary nuclei and repulse each other via repulsive

coulomb force. Quantum many-body problems are very difficult to solve compared to classi-

cal many-body problems. The reason is that system with Ne number of electrons has many-

body wave-function which is a function of 3Ne variables, Ψ(r1,r2...,rNe), where ri’s are the

3 dimensional variables. So dealing with wave function needs huge computational cost while

dealing with electron density require much lower computational cost due to reduction from

3Ne to 3 variables. Prior to Hartree (1928) and Hartree-Fock (1930) theories, Thomas and

Fermi (1927) [9] proposed the idea of solving many-body problem using density functional

approach. They considered the electron density of non-interacting homogeneous electron gas

as central variable. But there are several drawbacks; (a) resulting expression for kinetic energy

is approximate, (b) other source of error is the exchange energy, and (c) also error comes from

complete neglect of electronic correlation. It also failed to predict bonding between atoms.

Later in 1964 Hohenberg and Kohn [10] proposed that it is possible to develop an exact theory,

known as Density Functional Theory (DFT), for many-body system considering of single-

particle ground state density as basic variable. They proposed two important theorems:

H-K theorem I : There is one-to-one correspondence between the ground state density ρ(r)

of Ne electron system and external potential vext(r) acting on it. It means for any system of

interacting particles in an external potential vext(r), the density is uniquely determined.

H-K theorem II : Out of all possible densities, the density that minimizes the total energy

functional with a given potential is the exact ground state density. An universal functional for

energy can be defined in terms of density.
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The mathematical formulation is presented in the following.

The ground state electron density is given by

ρ(r) = Ne

∫
Ψ
∗(r,r2, ...,rNe)Ψ(r,r2, ...,rNe)dr2dr3...drNe (2.8)

where Ψ(r,r2, ...,rNe) is many-electron wave-function. Then single-particle electron-ion in-

teraction can be written as

Ven =
∫

drV (r)ρ(r) (2.9)

Two-electron potential term Vee can be written as

Vee =
1
2

∫ dr1dr2Γ(r1,r2)

|r1− r2|
(2.10)

where Γ(r1,r2) is the joint probability of finding one electron in a volume dr1 at r1 and another

electron in a volume dr2 at r2 and is expressed as

Γ(r1,r2) = Ne(Ne−1)
∫

Ψ
∗(r3,r4, ...,rNe)Ψ(r3,r4, ...,rNe)dr3dr4...drNe (2.11)

The kinetic energy can be written as

T = −Ne
h̄2

2m

∫
Ψ
∗(r,r2, ...,rNe)∇

2
rΨ(r,r2, ...,rNe)drdr2...drNe

= −Ne
h̄2

2m

∫ [
∇

2
rΨ
∗(r′,r2, ...,rNe)Ψ(r,r2, ...,rNe)

]
r=r′ drdr2...drNe

= − h̄2

2m

∫
dr
[
∇

2
rγ(r,r′)

]
r=r′ (2.12)

where γ(r,r′) is first order reduced density matrix given by,

γ(r,r′) =
∫

Ψ
∗(r′,r2, ...,rNe)Ψ(r,r2, ...,rNe)dr2dr3...drNe (2.13)

The density matrix formalism can now be used to express total energy of the system as

E[ρ,γ,Γ] = T [γ]+Ven[ρ]+Vee[Γ] (2.14)
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Thus many-electron system can be described in terms of density matrices instead of many-

electron wave-functions. By minimizing the total energy in terms of density matrices one can

obtain ground state properties. However, attempt to minimize energy is complicated due to

the fact that the sufficient conditions that γ and Γ must satisfy are not known. This leads to

the conclusion that computing total energy using Eq.(2.14) is not possible without evaluating

many-body wave-functions. The observation which support density functional theory is we do

not require Γ or γ to determine total energy E as ground state energy is completely determined

by the diagonal elements of the single-particle density matrix which is electron charge density.

Proof of H-K first theorem :

Let us consider two external potentials v(1)ext (r) and v(2)ext (r) which differ from each other by an

additive constant and give same ground state density ρ(r). As two different external potentials

are different they would belong to different Hamiltonians, say, H(1) and H(2) respectively,

which have different wave-functions Ψ(1) and Ψ(2). Variational principle tells that no wave-

function can give rise to energy which is less than the energy obtained from Ψ(1) for H(1).

So

E(1) = 〈Ψ(1)|H(1)|Ψ(1)〉< 〈Ψ(2)|H(1)|Ψ(2)〉 (2.15)

We assume here that ground state is nondegenerate. Since we have identical ground state

density for both of the Hamiltonians, Eq.(2.15) can be rewritten as

E(1) < 〈Ψ(2)|H(1)|Ψ(2)〉 = 〈Ψ(2)|H(2)|Ψ(2)〉+ 〈Ψ(2)|H(1)−H(2)|Ψ(2)〉 (2.16)

Hence

E(1) < E(2)+
∫

drρ(r)
[
v(1)ext − v(2)ext

]
(2.17)

If we interchange suffixed in Eq.(2.17) we have

E(2) < E(1)+
∫

drρ(r)
[
v(2)ext − v(1)ext

]
(2.18)
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Adding two inequalities Eq.(2.17) and Eq.(2.18) we have

E(1)+E(2) < E(2)+E(1) (2.19)

which is absurd.

So our starting assumption was wrong and a given ρ(r) can correspond to only one exter-

nal potential vext(r). As vext(r) corresponding to a ρ(r) is fixed, the Hamiltonian is also fixed.

So total energy functional is a unique functional of density. It proves Hohenberg-Kohn first

theorem.

Proof of H-K second theorem :

The external potential is uniquely determined by the density and the potential uniquely deter-

mines (except in degenerate situations) the ground state wave-function. So kinetic energy of

the system is also uniquely determined. The energy therefore can be written as a functional of

the density,

E[ρ] = T [ρ]+Uint [ρ]+
∫

vextρ(r)dr (2.20)

where Uint [ρ] is the potential energy corresponding to electron-electron interactions.

Eq.(2.20) can be written as

E[ρ] = F [ρ]+
∫

vextρ(r)dr (2.21)

where F[ρ] is a universal functional whose exact form is not known to us. Ground state energy

is uniquely determined by the ground state density ρ(1)(r). So,

E(1) = E[ρ(1)] = 〈Ψ(1)|H(1)|Ψ(1)〉 (2.22)

Using variational principle a different density, ρ(2) , gives higher energy ,

E(1) = E[ρ(1)] = 〈Ψ(1)|H(1)|Ψ(1)〉< 〈Ψ(2)|H(1)|Ψ(2)〉 (2.23)
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It tells us that if we minimize the total energy functional of ρ by density ρ we should obtain

ground state energy. The density that minimizes the energy is the ground state density.

Although Hohenberg-Kohn theorem is an "exact theory", in principle, for obtaining ground

state properties of any system the main disadvantage is we do not know the exact form of

the universal functional F[ρ]. If we would know the form of F[ρ] we could solve electronic

problems exactly. Another drawback of H-K theorem is that it assumes non-degenerate ground

state.

Kohn-Sham approximation :

In the Hohenberg-Kohn formulation nothing has been said about how to calculate, in practice,

various quantities and functional forms related to total energy functional. In 1965 Kohn and

Sham [11] proposed a formulation that leads to practical implementation of density functional

theory based on Hohenberg-Kohn theorem. Kohn and Sham proposed an idea of mapping

interacting many-body system into a non-interacting electron system having the same electron

density as in interacting system (cf. Fig. 2.1).

Figure 2.1 Mapping from interacting electron system of density ρ(r) to non-
interacting system of same density using Kohn-Sham approximation. Figure is
adopted from lecture note by N. M. Harrison [12].

Their formulation lead to a set of self-consistent equations known as Kohn-Sham equations.

The theory begins with the non-interacting reference system of Ne non-interacting electrons
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moving in the external potential vs, each in one of the Ne orbitals ψi. Then the Hamiltonian of

such a system is

ĤKS =−
Ne

∑
i

1
2

∇
2 +

Ne

∑
i

vs(ri) (2.24)

Here we have used atomic unit, h̄=me=1. The Hamiltonian in Eq.(2.20) has the exact eigen-

function which is a single determinant constructed from Ne number of lowest eigen states of

the one-electron equations [
−1

2
∇

2 + vs(r)
]

ψi = εiψi (2.25)

With the requirement that we need stationary ground state density we recall Euler-Lagrange

equation whose solutions are the functions for which a given functional is stationary. In our

case the Euler-Lagrange equation is

µ = vs(r)+
δT0[ρ]

δρ
(2.26)

where µ is Lagrange multiplier which is the chemical potential. The Kinetic energy for our

system is given by,

T0[ρ] =
Ne

∑
i
〈ψ(1)|− ∇2

i
2
|ψi〉 (2.27)

and the electron density is given by

ρ(r) =
Ne

∑
i
| ψi(r) |2 (2.28)

So the total energy of the system of non-interacting particles is

E[ρ] = T0[ρ]+
∫

drvs(r)ρ(r) (2.29)

Note that the kinetic energy T0[ρ] is not the original kinetic energy T [ρ]. Kohn-Sham for-

mulation, therefore reformulated the interacting problem so that its kinetic energy T0 can be

determined. The total energy of the system of non-interacting particles is therefore given by,

E[ρ] = T0[ρ]+
∫

drvs(r)ρ(r)+ J[ρ]+
∫

drvs(r)ρ(r)+Exc[ρ] (2.30)
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where J[ρ] is the coulomb integral expressed in terms of electron density and Exc[ρ] is the

exchange-correlation energy. Euler-Lagrange equation now becomes

µ = vKS(r)+
δT0[ρ]

δρ
(2.31)

where Kohn-Sham effective potential vKS is defined as

vKS(r) = vs(r)+
∫

ρ(r′)
|r− r′|

dr′+ vxc(r) (2.32)

where the exchange-correlation potential vxc is given by

vxc(r) =
δExc[ρ]

δρ
(2.33)

Kohn and Sham noticed that the equation is the same as that for non-interacting system under

an effective potential vKS. Therefore exact ground state density can be obtained by solving Ne

single-electron equations [
−1

2
∇

2 + vKS(r)
]

ψi = εiψi (2.34)

which are known as Kohn-Sham equations. The self-consistent iterative method for solving

Kohn-Sham equations is shown in the Fig. 2.2

Potential
constructed 

Initial guess 
(r)ρ

Calculate
VH[ρ] & Vxc[ρ] eff

Calculate new density 
ρ(r)= Σ 2

i
Self−consistent ?

Generate new
ρ(r)

NO

Can now have 
energy, forces, band structure stc.

YES

|Ψ      |(r)
i

(r)Ψi= ε i(r)ΨiH KS

[ρ]
H xc

[ρ]
ext

v      =V        +V        +V   [ρ][ρ]

Figure 2.2 Self-consistent loop for solving Kohn-Sham differential equations.
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2.1.4 Exchange-Correlation

In the expression for Kohn-Sham energy functional all the terms can be determined exactly

except Exc as exact form of vxc is not known to us. The exchange-correlation energy functional

Exc = Ex + Ec, where Ex is the exchange term and Ec is the correlation term. As we know

that due to Pauli’s exclusion principle two parallel spins can not be at the same position in

space, but opposite spin can. This interaction is called exchange. The exchange term can be

calculated exactly as in Hartree-Fock formalism.

Let us discuss the correlation term. If g(r,r′) is the two-body correlation function , then two

particle density matrix can be written as

Γ(r,r′) =
1
2

ρ(r)ρ(r′)g(r,r′) (2.35)

which implies

〈ψ|Vee|ψ〉=
1
2

∫
ρ(r)ρ(r′)
|r− r′|

drdr′+
1
2

∫
ρ(r)ρ(r′)
|r− r′|

[
g(r,r′)−1

]
drdr′ (2.36)

The first term in Eq.(2.36) is electron-electron coulomb repulsion and the second term is cor-

relation effect. The correlation energy is Coulombic. Since the correlation is probabilistic

quantity its exact form is not known. Though exchange term can be determined exactly

to compensate the error arising due to lack of exact form for correlation, approximation is

used for both exchange and correlation functions. For exchange-correlation energy functional

many approximations are available nowadays for the improvement in prediction of ground

state properties. Here only two of them are presented.

2.1.4.1 Local Density Approximation

Most widely used approximation for exchange-correlation energy functional is the local den-

sity approximation (LDA) for which exchange-correlation energy density εxc(r) is taken as



36 Chapter 2 Theoretical Background of Electronic Structure Calculations

that of a homogeneous electron gas (the nuclei are replaced by uniform positive charge back-

ground called Jellium model). That means generally inhomogeneous gas is considered locally

homogeneous. The approximation was proposed by Kohn and Sham in 1965 though very idea

was already given by Thomas, Fermi and Dirac in 1927. Now one can write the exchange-

correlation energy as an average of energy density εLDA
xc [ρ].

ELDA
xc =

∫
ρ(r)εLDA

xc [ρ]dr (2.37)

where εxc[ρ] = εx[ρ]+ εc[ρ] and the exchange energy εx[ρ] is exactly given by [13, 14]

ε
LDA
x =− 3

4π
(3π

2Ne)
1/3 (2.38)

The rest of εLDA
xc [ρ] is kept in εLDA

c [ρ] for which there is no exact analytical formula. But

correlation energies are known exactly from quantum Monte Carlo (QMC) calculation by

Ceperley and Alder (1980) [15]. The energies were fitted by Vosko, Wilkes and Nussair

(VWN) [16] with εLDA
c [ρ] and they have obtained accurate results with errors less than 0.05

mRy in εLDA
c [ρ]. VWN result is given by

ε
LDA
c [ρ]≈ A

2
[ln
(

y2

Y (y)

)
+

2b
Q

tan−1
(

Q
2y+b

)
− by0

Y (y0)

[
ln
(
(y− y0)

2

Y (y)

)
+

2(b+2y0)

Q
tan−1

(
Q

2y+b

)]
] (2.39)

where y =
√

rs, Y (y) = y2 +by+ c, Q =
√

4c−b2, y0 = −0.105,b = 3.727,c = 12.935,A =

0.0622 and rs is electron gas parameter which is mean distance (in atomic unit) between atoms.

There is another formula for exchange-correlation functions by Perdew and Zunger (1981)

[17] which gives the similar result. Later the correlation functional has been parametrized by

John P. Perdew and Yue Wang [18].

For magnetic systems the LDA is extended taking into account spin-polarization which is

called local spin density approximation (LSDA) [19]. Here ρ(r) split into ρ↓(r) and ρ↑(r)
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and exchange-correlation energy functional is

ELSDA
xc =

∫
(ρ↑+ρ↓)εxc[ρ↑,ρ↓]dr (2.40)

LDA, though simple, is surprisingly very successful. The main reason is because the exchange-

correlation energy does not depend on shape but the size of the exchange-correlation hole.

Also, LDA satisfies the sum rule that means exchange and correlation hole integrates over

space exactly to −1 per electron.

2.1.4.2 Generalized Gradient Approximation

The Eq.(2.40) is valid when the spin density varies very slowly over space which is not always

true for real atoms, molecules and solids. A correction was made for slowly varying limit with

second order gradient expansion approximation (GEA)[20, 18, 21, 22]

EGEA
xc [ρ↑,ρ↓] = ELSDA

xc + ∑
σ ,σ ′

∫
Cσ ,σ ′

xc (ρ↑,ρ↓)
∇ρσ ·∇ρσ ′

ρ
2/3
σ ρ

2/3
σ ′

dr (2.41)

which is asymptotically valid for system with slowly varying density but inclusion of cor-

relation in second order gives energies less accurate than LSDA [20, 23]. The constant

Cσ ,σ ′
xc (ρ↑,ρ↓) is determined variationaly for each atom [24]. Then improvement over the ap-

proximations LSDA and GEA is needed for the system where density varies rapidly and that is

done by introducing Generalized Gradient Approximation (GGA) [25, 26] whose functional

form (only upto second order derivative) is given by,

EGGA
xc [ρ] =

∫
ρ(r)εGGA

xc (ρ(r), |∇ρ(r)|,∇2
ρ(r))dr (2.42)

Various GGA functional forms have been proposed [25, 27, 18, 21, 22, 28, 29] for the im-

provement of results. GGA reduces the bond dissociation energy error and generally improve

transition state barrier and gives better magnetic properties, but unlike LDA there is no sin-

gle universal form. The calculations presented in the thesis are mostly done by the GGA
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exchange-correlation functional known as PBE functional proposed by Perdew, Burke and

Ernzerhof [30] in 1996.

2.1.5 Basis sets

To solve electronic structure theory we need to solve Schrödinger equation, which means we

need basis functions to expand the wave function. Depending on the choice of basis sets var-

ious electronic structure methods have been developed. Different basis sets can be primarily

put into two categories- (i) fixed basis sets, and (ii) partial wave methods. Each method has its

own advantages and disadvantages.

(i) Fixed Basis Set Method

The wave-function is determined as an expansion in some set of fixed basis functions, like

linear combination of atomic orbitals (LCAO) [31], plane wave [32], gaussian type orbitals

(GTO) [33], slater type orbitals (STO) [34] etc. One has to solve the eigenvalue problem

(H− εO).a = 0 (2.43)

where H is the Hamiltonian and O is the overlap matrix. ε are eigenvalues to be obtained after

solving Eq.(2.43) and a is the expansion coefficient matrix that gives eigenvectors. [35]

The main advantage of fixed basis method is that it is computationally very simple and faster,

while the disadvantage is that the basis set may be large to be reasonably complete. Out of

different fixed basis set methods plane wave basis set is most popular.

(ii) Partial Wave Method

In this approach, the wave-function is expanded in a set of energy and potential dependent

partial waves like cellular method [36], augmented plane wave method [37], Korringa-Kohn-

Rostoker method (KKR) [38, 39]. In partial wave method, one needs to solve the following
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set of equations

M(ε).b = 0 (2.44)

The above equations have complicated non-linear energy dependence [35].

The partial wave method has many advantages - (a) basis set is minimal that means minimum

number of basis functions are needed for each atom, (b) partial waves apply equally well to

any atom in the periodic table, (c) offers solutions of arbitrary accuracy for close packed sys-

tem contrary to fixed basis set method. But the main disadvantage is that partial wave method

is computationally heavy. To overcome the complexity of non-linear energy dependence, An-

dersen (1975) [40] first proposed methods involving linear energy dependence such as Linear

Muffin Tin Orbital (LMTO) and Linear Augmented Plane Wave (LAPW) method.

In the present thesis we have used LMTO method as implemented in Stuttgart code [41],

LAPW method as implemented in Wien2k code [42, 43] and also pseudopotential method

along with plane wave basis as implemented in VASP [44, 45, 46, 47]. We have used these

methods for the calculation of total energies and electronic structure analysis. For the calcu-

lation of wannier functions we have used Nth order Muffin-Tin Orbital (NMTO) downfolding

method. In the following subsections we provide brief discussion on each of these methods.

2.1.5.1 Linear Muffin-Tin Orbital Method

Linear Muffin-Tin Orbital (LMTO) method [41] provides minimal basis set for solving Kohn-

Sham equations. The method uses muffin-tin approximation. In this approximation potential is

assumed to be spherically symmetric close to the nuclei- the spherical region is called muffin-

tin sphere and potential is assumed to be flat in between muffin-tin spheres- the region is called
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interstitial. Mathematically muffin-tin potential can be defined as

v(r−R) = v(rR); rR ≤ sR

= −v0; rR > sR, rR = |r−R| (2.45)

where r is any position in the solid and R is the position of the nuclei. sR is the muffin-tin

radius of the sphere at R.

Figure 2.3 Left panel: Muffin-tin spheres and the interstitial region. Comparison
between exact potential and muffin-tin potential is shown in the middle and right
most panel. Figure adopted from [35].

Inside the Muffin-Tin (MT) sphere the solutions of the Schrödinger’s equation are partial

waves, as the potential is spherically symmetric, and can be written as φ(rR)= φRl(rR,ε)YL(r̂R).

The solution φRl(rR,ε) satisfies radial Schrödinger’s equation[
d2

dr2
R
− v(rR)+

l(l +1)
r2

R
− ε

]
rRφRl(rR,ε) = 0 (2.46)

YL(r̂R)’s are the spherical harmonics where L represents angular momentum quantum numbers

(l,m).

Outside muffin-tin sphere the radial Schrödinger’s equation becomes[
d2

dr2
R
+

l(l +1)
r2

R
−κ

2
]

rRφRl(rR,ε) = 0 (2.47)
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where κ2 = ε− v0.

Hence the solution of Eq.(2.47) is plane wave which can be expanded in terms of spherical

Bessel and Neumann functions,

ARl(ε,κ) jl(κ,rR)+BRl(ε,κ)ηl(κ,rR) (2.48)

The total solution is given by

φRl(rR,ε) =


N0

RL(ε,κ)φRl(rR,ε), if rR ≤ sR

ηl(κ,rR)+P0
RL(ε,κ) jl(κ,rR), if rR > sR

(2.49)

Where N0
RL(ε,κ) is normalization function and P0

RL(ε,κ) is potential function.

To have a basis such that head contains all information about potential and tail contains infor-

mation of potential outside the sphere we can rewrite Eq.(2.49) as,

φRl(rR,ε) =


N0

RL(ε,κ)φRl(rR,ε)+P0
RL(ε,κ) jl(κ,rR), if rR ≤ sR

ηl(κ,rR), if rR > sR

(2.50)

The new basis is well behaved in all space. Considering array of ion cores with intervening

interstitials the wave-function of the system can be written as linear combination of the MT

orbitals ,

Ψ(r,ε) = ∑
R

∑
L

CRL(ε)χRL(r−R,ε) (2.51)

The expression for the tails of the Neumann function ηl(κ,rR) outside its own sphere can be

written as

ηl(κ,rR) =−∑
l′

S0
RL,R′L′(κ) jl′(κ,rR′) (2.52)

S0
RL,R′L′(κ) are canonical structure constants depending on the R and R′ and independent of

ion-core potentials.
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Figure 2.4 Muffin-tin orbital with its head in its own sphere and tails in other neigh-
boring spheres. Figure adopted from [35].

As shown in Fig.2.4 the muffin-tin orbitals, can then be written as

χRL(r−R,ε) =



[
N0

RL(ε,κ)φRl(rR,ε)+P0
RL(ε,κ) jl(κ,rR)

]
YL(r̂R), if rR ≤ sR

−∑
L′

S0
RL,R′L′(κ) jl′(κ,rR′)YL(r̂R), if rR′ ≤ sR′

−∑
L′

S0
RL,R′′L′(κ) jl′(κ,rR′′)YL(r̂R), if rR′′ ≤ sR′′

· · · · · · · · · · · ·

ηl(κ,rR)YL(r̂R), if rR ∈ interstitial

(2.53)

Let us define few notations for functions as

‖ΨR〉 represents function defined in all space

|ΨR〉 is zero outside its own sphere, and

|ΨR〉‡ is nonzero only in the interstitial space.

Then we can write a MT orbital defined all over the space as

‖ χR(ε)〉= N0
R(ε)|φR(ε)〉+P0

R(ε,κ)| jR(κ)〉−∑
R′

S0
R,R′(κ)| jR′(κ)〉+ |ηR(κ)〉‡ (2.54)
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The total wave-function can be written as linear combination of all MT orbitals,

‖ΨR〉= ∑
R

C+
R (ε) ‖ χR(ε)〉 (2.55)

Let us consider a single MT sphere centered at R0, then solution to Schrödinger’s equation

within MT sphere rR0 < sR0 is,

|Ψ(ε)〉=C+
R0
(ε)N0

R0
(ε)|φR0(ε)〉 (2.56)

Substituting Eq.(2.54) into Eq.(2.55) and after few simplifications we can write

|Ψ(ε)〉= ∑
R

C+
R (ε)[N

0
RR0

(ε)|φR(ε)〉+(P0
RR0

(ε,κ)−S0
RR0

(κ))| jR(κ)〉] (2.57)

Comparing Eq.(2.54) and Eq.(2.57) we see that extra term P0
R0
| jR0(κ)〉 which was added to

partial wave of head of MT orbital is canceled by the contributions of the tails of the MT

orbitals from other neighboring spheres. It is called tail cancellation condition, given by

C+N0
RR0

(ε)−1[P0
RR0(ε,κ)−S0

RR0(κ)] = 0 (2.58)

After solving above set of linear equations we obtain the coefficients C(ε) .

This leads to the Korringa−Kohn−Rostoker (KKR) equations,

det ‖ P0(ε,κ)−S0(κ) ‖= 0 (2.59)

Solving the determinantal equation we can obtain the eigenvalues ε .

Main problem with KKR equations is that the basis set is energy dependent. Andersen [41]

found the method of linearising the equations. The energy dependent basis can be expanded

in Taylor series with respect to some reference energy εν
RL as

|ΨRL(ε)〉= |ΨRL(ε
ν)〉+(ε− ε

ν
RL)|Ψ̇RL(ε)〉+O((ε− ε

ν
RL)

2) (2.60)

We now can define two wave functions

|Φ(ε)〉 = N0(ε)(N0)−1|φ(ε)〉 (2.61)

|Φ̇(ε)〉 = N0(ε)(N0)−1|φ̇(ε)〉+ Ṅ0(ε)(N0)−1|φ(ε)〉 (2.62)
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To linearize the MT orbitals, one need to replace the head by linear combination of |φ(ε)〉

and |φ̇(ε)〉 and consider Neumann function at a fixed value of κ . Also tails of LMTO’s are

replaced by |φ̇R′(ε)〉

So the LMTO basis function becomes

‖ χR〉 = ‖ ηR〉+ |φR〉+∑
R′

hRR′|φ̇R′(ε)〉− |ηR〉

= |φR〉+∑
R′

hRR′|φ̇R′(ε)〉+ |ηR(κ)〉‡ (2.63)

Then the secular equation to be solved, using variational method, is

‖ H− εI ‖= 0 (2.64)

Now potential term can be expanded in terms of reference energy as

P0(ε) = P0 +(εI− ε
ν)Ṗ0 (2.65)

Using this expansion of potential function we have

det[(P0)1/2] ‖ P0(Ṗ0)−1 + εI− ε
ν − (Ṗ0)−1/2S0(Ṗ0)−1/2 ‖ det[(P0)1/2] (2.66)

if det[(P0)1/2] 6= 0 , we get

det ‖ P0(Ṗ0)−1 + εI− ε
ν − (Ṗ0)−1/2S0(Ṗ0)−1/2 ‖= 0 (2.67)

Comparing Eq.(2.67) with Eq.(2.64) we have

H =C+41/2S41/2 (2.68)

with C =−P0(Ṗ0)−1 known as band centre parameter and4= (Ṗ0)−1 known as band width

parameter.

The LMTO method is accurate upto first order in (ε − εν) within muffin-tin sphere and to

zeroth order in the interstitial. Later Atomic Sphere Approximation (ASA) has been used with
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traditional LMTO method [48]. In this approximation MT spheres are blown up until the total

volume occupied by the spheres is equal to the volume of unit cell. With the use of ASA it

eliminates the interstitial and increases the accuracy. LMTO-ASA works very well for close

packed structure. But for open structures empty spheres (spheres with no electronic charge)

are needed to fill the space.

2.1.5.2 Nth order Muffin-Tin Orbital Downfolding Method

As an input to many-body calculation, we often need to obtain low energy Hamiltonian out of

full DFT Hamiltonian. Downfolding procedure [49] is capable of doing this. In this method

the basis set is divided into two subsets, (a) |l〉 lower subset and (b) |s〉 intermediate subset.

The reduction of full Hamiltonian H into lower subset Hamiltonian H̃ll is done so that lower

l eigenvalues of original Hamiltonian H and eigenvalues of H̃ll are the same. The expression

for H̃ll is given by

H̃ll = Hll−Hlh(Hhh− ε)−1Hhl (2.69)

This expression involves energy and energy dependence is removed by linearization or N-

inazation using LMTO or NMTO method [50].

Though downfolding method can be used in TB-LMTO method to obtain real space hopping

integrals, LMTO does not give accurate method to obtain massive downfolding where one

selects very few bands out of all bands. The disadvantages of TB-LMTO method are ,

(i) LMTO basis is complete up to (ε− εν) (i.e., first order) inside the muffin-tin sphere while

it is only complete to (ε − εν)0 (i.e., zeroth order) in the interstitial. This inconsistency can

be removed by introducing Atomic Sphere Approximation (ASA), but that complicates the

formulation.

(ii) The expansion of Hamiltonian in the orthogonal representation as a power series in the
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two centered tight-binding Hamiltonian h,

< χ̃|H− ε
ν |χ̃ >= h−hoh+ · · · (2.70)

which is obtained only within ASA and excluding downfolding. [35]

The idea behind the formulation of NMTO method [51] is to develop a more general polyno-

mial MTO scheme of degree N, which allows to use Nth order Taylor series or allows to use

a mesh of N +1 discrete reference energy points so that one can obtain more accurate results

over a wider energy range without increasing the size of basis set.

Figure 2.5 Quadratic approximation to energy dependence of a partial wave for dis-
crete energy mesh. Figure taken from [35].

The salient features of the NMTO method are the following. (i) NMTO method still uses MT

potential. (ii) NMTO method still uses partial waves φRL(ε,rR) in atomic sphere. (iii) Instead

of Neumann function as in standard LMTO method, it uses screened spherical waves (SSW)

in the interstitial region. (iv) NMTO method treats the interstitial region accurately and goes

beyond the linear approximation.

The formulation of NMTO basis is described briefly as follows. [35]

We position a spherical wave YL(θ ,φ)ηl(κ,r) at a site R. We want solution of wave equation

which is a spherical wave YL in its own sphere and zero at all other spheres and for all other
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angular momenta. The solution to this boundary value problem is called screening transfor-

mation [41]. We now define hard screening spheres of radius aR which is less than the radius

of MT spheres sR . The screening spheres are not allowed to overlap. The MT spheres are

potential spheres and screening spheres are charge spheres. The partial wave φRL is the solu-

tion (shown by red line in figure 2.5) of Schrödinger equation inside the MT sphere. φRL is

given by numerical integration of Schrödinger equation out to the MT sphere (radius sR) in

the potential v(r). Now integration is done backward to the screening sphere (radius aR) and

using flat interstitial potential v0 which gives the solution φ 0
RL (shown by green line in figure

2.5). The solution ψRL (shown by blue line in figure 2.5) at screening sphere has continuous

value but not continuous derivative. Then the total solution, namely the screened spherical

wave (SSW), ΨRL (corresponding to single sphere) is given by

ΨRL = (φRL−φ
0
RL)YL +ψRL (2.71)

Figure 2.6 The kinked partial waves at screening spheres. Figure taken from [35].

This is the solution to the Schrödinger equation at energy ε corresponding to its own MT

potential and for the flat interstitial potential. But the solution has a kink (discontinuous spatial

derivative) at all screening spheres (cf. Fig. 2.6). Now, the solution in all space at an energy ε
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is Ψ(ε) = ∑
R

ΨRL(ε) must be differentiable and for that sum of kinks of ΨRL(ε) must vanish,

K.v = 0

a[D−S].v = 0 (2.72)

where K = a[D− S] is kink matrix with D =
a

φ 0
RL(a)

dφ 0
RL

dr
. Kink matrix contains values of

kinks of all the ΨRL(ε) at all screening spheres. The above equation is called kink cancellation

(cf. Fig. 2.7) in comparison to previous tail cancellation condition. [35]

Figure 2.7 The kink cancellation make the solution continuous at the spheres. Figure
taken from [35].

Now the members (labeled by R′,L′) of the NMTO basis set χ
(N)
R′,L′(rR) is constructed by La-

grange’s interpolation of φRL(εn,rR) evaluated at the energy points ε0, · · · · · · ,εN ,

χ
(N)
R′,L′(rR) =

N

∑
n=0

∑
RL

φRL(εn,rR)L
(N)
nRL,R′,L′ (2.73)

Therefore the construction of basis is energy selective and localized in nature. The energy se-

lective and localized nature of NMTO basis makes NMTO basis set flexible and may be chosen

as truely minimal which can span selected bands with as few basis functions as the number

of bands. If these bands are isolated NMTO basis set spans the Hilbert space of Wannier

functions and orthonormalized NMTOs are the Wannier functions. Even if the bands overlap
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with other bands it is possible to pick those few bands and the corresponding Wannier-like

functions with NMTO downfolding method. Therefore NMTO-downfolding method can be

used for direct generation of Wannier functions. The real space representation of downfolded

Hamiltonian provides information regarding effective hopping interactions, onsite energies

etc. which have been used in the present thesis.

2.1.5.3 Linear Augmented Plane Wave Method

Linear Augmented Plane Wave (LAPW) basis set is constructed by partitioning the space

into two parts - (a) spheres around each atom where wavefunctions are rapidly varying and

atomic like, and (b) the region in between spheres, interstitial, where wavefunctions are vary-

ing smoothly and not atomic like. In the interstitial region basis functions are plane waves.

Figure 2.8 The partition of unit cell in LAPW method.

Therefore each basis function is defined as linear combination of atomic like functions inside

the sphere which is connected smoothly to the plane wave in the interstitial region. Mathe-

matically it is represented by,

χk,i(r) =


∑
lm
[aα

lmuα
l (εl,1,rα)+bα

lmu̇α
l (εl,1,rα)]YLM(r̂α), if r ∈ sα

1√
Ω

e j(Gi+k)·r, if r ∈ I

(2.74)
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where uα
l (εl,rα) is the solution of radial Schrödinger equation for an atom α , azimuthal

quantum number l and linearization energy εl,1 (the meaning of index ’1’ in energy is rep-

resenting one linearization energy), with k being wave vector in the Brillouin zone and Gi

being reciprocal lattice vector. alm and blm are determined by the condition that the wave

function should be continuous and smooth at the sphere boundary. To satisfy boundary con-

dition plane wave basis in the interstitial is expanded in terms of Bessel functions jl(k,r)

as
∞

∑
lm

4π jl jl((k+G),r)Y ∗LM(r̂)YLM(r̂) which must match the solution within the sphere at the

sphere boundary. In principle, large number of partial waves (l values) are required to exactly

satisfy the boundary conditions. But in practice the lm series is truncated at a desired value of

lmax.

The function Ylmax,m(θ ,φ) has 2lmax number of nodes, for a given lmax, (where θ is 0 to 2π for

fixed value of φ ) for the α sphere. Then nodes per unit length is
2lmax

2πRα

=
lmax

πRα

. To match

plane wave with solution inside sphere, the plane wave must have same number of nodes per

unit length. The plane wave with the minimum period of
2π

Gmax
has

2
2π

Gmax

=
Gmax

π
number of

nodes per unit length. The plane wave cut-off Gmax and angular momentum cut-off lmax are

comparable only if the number of nodes per unit length are identical. Therefore we have the

condition for cut-off lmax to be

lmax = Rmin
α ×Gmax (2.75)

where Rmin
α is the smallest muffin-tin radius. With this condition less number of plane waves

are required to describe the smoother part of the wave function. The value of Gmax can be

reduced and the product Rmin
α ×Gmax should remain constant to obtain greater accuracy. Com-

pared to a plane wave basis set LAPW basis set can thus be much smaller.

A core state is a state which does not participate in the chemical bonding with other atoms

rather prefers to stay entirely within the muffin-tin sphere. On the other hand valence states

participate in the chemical bonding and they leak out of muffin-tin sphere. The problem arises
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when the states with the same l but different principal quantum number n both participate in

valence states. For example, Fe in BCC structure has finite amount of 4p character in the

valence states that are about 0.2 Ryd below Fermi level. But 3p state that are 4.3 Ryd below

Fermi level are not entirely confined to its core state. Such low lying valence states are called

semi-core states. This situation has been solved by introducing another kind of basis function

to LAPW basis set, called local orbital (LO) . LO for a particular l and m, and for a particular

atom α is defined as

φ
α,LO
lm (r) =


[aα,LO

lm uα
l (εl,1,rα)+bα,LO

lm u̇α
l (εl,1,rα)+ cα,LO

lm uα
l (εl,2,rα)]YLM(r̂α), if r ∈ sα

0, if r ∈ I
(2.76)

It is called "local" because it is zero in the interstitial and within the spheres of other atoms.

Within the sphere of atom α , the solutions uα
l and u̇α

l , same as in LAPW basis, are used with

linearization energy εl,1. The lower valence state is sharply peaked at energy εl,2. The single

radial solution uα
l (εl,2,rα) at energy εl,2 describes lower valence state. The three coefficients

are determined by using the condition that LO is normalized and has zero value and zero slope

at the muffin-tin boundary. The only problem with LAPW [42] +LO method is that accuracy

comes with the cost of increased computational time due to increase in the number of basis

per atom.

Later APW+lo [52] method is introduced where the basis set will be energy independent and

basis has the same size as in the APW method. In this sense, APW+lo includes the good

features of both APW and LAPW+LO. The APW+lo basis contains two kinds of functions.

The first kind are APWs,

χk,i(r) =


∑
lm

aα
lmuα

l (εl,1,rα)YLM(r̂α), if r ∈ sα

1√
Ω

e j(Gi+k)·r, if r ∈ I

(2.77)
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The basis function is augmented with second type of functions local orbitals which is other

kind than one used with LAPW basis. So this time they are called ’lo’ instead of ’LO’ and are

defined as,

φ
α,LO
lm (r) =


[aα,lo

lm uα
l (εl,1,rα)+bα,lo

lm u̇α
l (εl,1,rα)]YLM(r̂α), if r ∈ sα

0, if r ∈ I
(2.78)

The two coefficients aα,lo
lm and bα,lo

lm are determined with the condition that the value of local

orbitals (lo) are zero at the sphere boundary, but are not having zero slope. So both APW

and lo are continuous at boundary of sphere, but their first derivatives are discontinuous. The

required number of plane waves in the APW+lo basis set is less than the number required in

LAPW+LO basis set.

2.1.5.4 Pseudopotential Method

To solve the Schrödinger equation the space can be divided into two regions - region near

nuclei is core region which contains core electron and remaining region is valence region

containing valence electrons. To describe valence electrons in the interstitial wave-function,

few plane waves is enough. But near the core region kinetic energy increases leading to higher

oscillating wave function which can not be described with few plane waves. In order to solve

this problem Herring in 1940 [53] proposed Orthogonalized Plane Wave (OPW) method [54]

where valence wave function is linear combination of plane waves and core states so that the

resulting wave function is orthogonal to core state wave function. The Pseudopotential method

originated from OPW method. Let us denote the core state and valence state as Ψc
k and ψv

k

respectively. The OPW basis is then given by

φk = eik.r +∑
c

bcΨ
c
k(r) (2.79)
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constant bc is determined by the condition of orthogonality,∫
drΨ

c∗
k (r)φk(r) = 0 (2.80)

Then wave function for the system can be written as linear combination of OPWs,

Ψk = ∑
G

ck+Gφk+G (2.81)

where G is reciprocal lattice vectors. The wave function is smoothly varying like plane wave

in the interstitial region and rapidly oscillating near core region.

With this basic idea of OPW we can now establish the idea of Pseudopotential.

φ v
k can be written as

φ
v
k (r) = ∑

G
Ck+Ge(k+G).r (2.82)

Using Eq.(2.79), it can be written

Ψ
v
k(r) = φ

v
k (r)+∑

c
[
∫

dr′Ψc∗
k (r′)φ v

k (r
′)]Ψc

k(r) (2.83)

Being exact valence wave function Ψv
k(r) satisfies Schorödinger equation

HΨ
v
k(r) = ε

v
k Ψ

v
k(r) (2.84)

Using Eq.(2.83) into Eq.(2.84) and using Schorödinger equation for Ψc
k(r)

HΨ
c
k(r) = ε

c
k Ψ

c
k(r) (2.85)

along with the potential function

V R
Ψ = ∑

c
(εc

k − ε
v
k )(
∫

dr′Ψc∗
k Ψ)Ψc

k (2.86)

we have

(H +V R)φ v
k = ε

v
k φ

v
k (2.87)
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that is nothing but Schorödinger equation satisfied by φ v
k . The pseudopotential is defined by

H +V R =− h̄2

2m
V 2 +V pseudo (2.88)

Figure 2.9 The all-electron wave-function and the all-electronic (true) potential(solid
lines) plotted against distance r, from the atomic nucleus. The corresponding pseudo-
wavefunction and the pseudo-potential are plotted in dotted lines. Outside a given
radius rc , the all-electron and the pseudo-electron wavefunctions match. This figure
is adapted from http://en.wikipedia.org/wiki/Pseudopotential.

The main idea of pseudopotential is replacing strong coulomb potential of the nuclei by an

effective ionic potential acting on the valence elctrons. So, the pseudopotential is an effective

potential which represents the balance between attractive potential and repulsive potential V R

as shown in figure[2.8]. The most important point to notice that new valence states φ v, pseudo

wave-functions, with the pseudopotential have eigenvalues same as that of original valence
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states Φv. We have found a new set of valence states that is under a weaker potential close

to the nucleus and true ionic potential away from nucleus, beyond cut-off radius rc . As is

known, the region beyond rc is where electrons interact to form chemical bonds.

After the introduction of initial theory, several attempts have been taken to develop more effi-

cient and accurate pseudopotential method. In norm-conserving pseudopotential method [55],

the all-electron (AE) wave-function is replaced by a soft nodeless pseudo (PS) wave-function

with the condition that the norm of PS wave function should be same as that of AE wave-

function within the chosen core radius and outside the core radius both wave functions are

identical. The pseudopotential constructed in this way requires a core radius around the out-

ermost maximum of AE wave function so that charge distribution and moments of AE wave

functions are well reproduced by PS wave function. The situation gets complicated when

one deals with strongly localized orbitals, e.g., 3d transition metal elements because pseu-

dopotential requires large number of plane waves. Later Vanderbilt improved the formalism

by introducing ultra-soft pseudopotential [56] and in this new scheme the norm-conservation

constraint was relaxed and localized atom centered augmentation charges were introduced to

make up for the charge deficit. These augmentation charges are defined as the charge density

difference between the AE and the PS wavefunction, For convenience they allow an efficient

treatment of the augmentation charges on a regular grid. Only for the augmentation charges, a

small cutoff radius must be used to restore the moments and the charge distribution of the AE

wavefunction accurately. Later Blöchl [57] developed the projector-augmented- wave (PAW)

method which turns out to be computationally elegant, transferable and accurate method for

electronic structure calculation of transition metals and oxides.
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2.1.5.5 Projector Augmented Wave Method

In 1994 P. E. Blöchle introduced the projector augmented wave (PAW) method [57] which

combines idea from the LAPW method with the plane wave pseudopotential approach. For

electronic structure calculation of transition metals and oxides, PAW method turns out to be

computationally elegant and accurate. Kresse and Joubert [58] improved the PAW method and

implemented in plane wave based code of Vienna Ab initio Simulation Package (VASP). In

this formalism all electron wave function Ψn is derived from the PS wave function Ψ̃n as

|Ψn〉= |Ψ̃n〉+∑
i
(|φi〉− |φ̃i〉)〈p̃i|Ψ̃n〉 (2.89)

The index i represents the atomic position Ri. The function φi represents the all electron partial

wave and φ̃i represents PS partial wave. These two wave functions match in both value and

slope at the boundary rc. The function p̃i is the projector function that satisfies the relation

〈p̃i|φ̃ j〉= δi j. The all-electron density can be derived using PAW method as

n = ñ+∑
a
(na− ña) (2.90)

where the pseudo-charge density ñ is calculated from PS wave function on plane wave grid.

The charge densities na and ña are calculated, for atom a, on logarithmic radial grid. The

difference (na− ña) vanishes within the augmentation spheres. In PAW method an additional

charge, called compensation charge, is added to the auxiliary charges na and ña to make mul-

tipole moments of (na− ña) zero. Similarly the various energy terms can also be expressed as

functional of (na, ña) and ñ. In this way we can derive Kohn-Sham equations.

The main advantage of PAW method is that it does not have to deal with inert core elec-

trons. Also valence PS wave functions are smooth and no nodes exist inside the augmentation

spheres. Using PAW approach one can access full all-electron density which is very useful for

orbital dependent exchange correlation functional.
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2.1.6 LDA + U Method

Most well known failure of DFT method is description of Mott insulators. The insulating

ground state solution in such materials arises due to the strong Coulomb repulsion between

electrons which forces them to localize on atomic-like orbitals (Mott localization) [59]. If

the electrons are strongly localized their motions become correlated and their wave functions

posses marked many-body character. The insulating nature of such materials needs description

beyond standard band theory. These materials are called "strongly-correlated" materials.

The exchange-correlation functional like local density approximation (LDA) or generalized

gradient approximation (GGA) fails to predict the insulating character of these materials. Even

it predicts unsatisfactory results regarding equilibrium crystal structure, magnetic moments

etc.

One of the simplest model developed to justify physics of correlated materials is the Hubbard

model [60, 61, 62]. The one band Hubbard model defined on localized orbital basis is given

by

HHub = t ∑
<i, j>,σ

(c†
i,σ c j,σ +h.c.)+U ∑

i
ni,↑ni,↓ (2.91)

with < i, j > represents nearest-neighbor atoms and c†
i,σ , c j,σ and ni,σ are the electronic cre-

ation operator, electronic annihilation operator and number operators for electrons of spin σ

on the ith site. As the electrons are strongly localized the electronic motion is described by the

hopping process from one site to nearest-neighbor site whose amplitude t is proportional to

the bandwidth of valence electronic states and represents the single-particle term of the total

energy. Due to strong localization, Coulomb interaction is taken into account only at the same

atomic site through the term proportional to the product of the occupation numbers of atomic

states on the same site, whose strength is U . These two parameters t and U are the minimum

parameters to describe the Mott insulating physics. In the Mott insulting system the insulating
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ground state arises due to dominance of U over t (U >> t). The situation when t >>U DFT

method is capable of predicting ground state properties of such systems.

To describe the insulating ground state when U >> t, the "LDA + U" method was intro-

duced. This method is correction to DFT method for the missing correlation. In the LDA+U

formalism the total energy can be expressed as

ELDA+U [ρ] = ELDA[ρ]+EHub[nmm′]−Edc[n] (2.92)

where EHub is the energy due to electron-electron interaction from the Hubbard model. The

term Edc is the energy introduced to avoid the double counting. Double counting correction

is needed because, as we add explicitly the Hubbard term EHub, we have to remove the en-

ergy already included in the LDA. Since the precise localized version of exchange-correlation

function within LDA is not available so there are various approximations made to define Edc.

The simplest formulation of LDA+U was introduced by Anisimov [63] that can be written as

E = ELDA +∑
I

[
U I

2 ∑
m,σ 6=m′,σ ′

nI
m,σ nI

m′,σ ′−
U I

2
nI(nI−1)

]
(2.93)

In this equation nI
m,σ = nI

mm,σ and nI = ∑
m,σ

nI
m,σ , where n is the occupation number. The index

m represents the localized states of site I. The second term in the Eq.(2.93) is the Hubbard

term and the third term is the double counting term. Using the definition of occupation number

in Eq.(2.93) the Hubbard potential comes out to be non-local.

The orbital energies can be derived from Eq.(2.93) as

εm =
∂E
∂nm

= εLDA + U(
1
2
−nI

m,σ ) (2.94)

This shows that LDA+U formulation shifts the LDA orbital energy by (−U
2
) for occupied

orbital(nm = 1) and by (+
U
2
) for unoccupied orbital (nm = 0) (figure[2.8]).

The difference in the energy values of lower and upper Hubbard bands gives the estimate of
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Figure 2.10 Figure is showing splitting of LDA orbital into occupied and unoccupied
orbital opening a gap ∼U .

energy gap for the system, as shown in Fig. 2.10

2.1.6.1 Rotationally-invariant formulation

The main drawback of the LDA+U formalism, introduced by Anisimov is that the Eq.(2.93)

is not invariant under rotation of atomic orbital basis set used to define the occupation of d

states. As a consequence the results obtained from this formalism depends on the choice of

the localized basis set.

The Lichtenstein method

To solve this drawback A. Liechtenstein and coworkers [64] developed a basis set independent

formulation of LDA+U in which the Hubbard term EHub is given an expression using Hartree-

Fock method,

EHub[
{

nI
m,m′

}
] =

1
2 ∑

m,σ ,I
[〈m,m′′|Vee|m′,m′′′〉nIσ

m,m′n
I−σ

m′′,m′′′

+(〈m,m′′|Vee|m′,m′′′〉−〈m,m′′|Vee|m′′′,m′〉)nIσ

m,m′n
I−σ

m′′,m′′′ ] (2.95)

where Vee are the screened Coulomb interactions among the nl electrons computed on the

wave functions of the localized basis set (e.g., d atomic wave functions) that are labeled by the
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index m. The double-counting term Edc is given by

Edc[
{

nI
m,m′

}
] = ∑

m,σ ,I

{
U I

2
nI(nI−1)− JI

2
[nI,↑(nI,↑−1)−nI,↓(nI,↓−1)]

}
(2.96)

The atomic (e.g., d or f) states are chosen as localized basis so that the energies can be com-

puted using the expansion of the
e2

|r− r′|
Coulomb kernel in terms of spherical harmonics

[65].

〈m,m′′|Vee|m′,m′′′〉= ∑
k

ak(m,m′,m′′,m′′′)Fk (2.97)

where k is between 0 and 2l (l being angular momentum quantum number). ak coefficients

are derived from products of Clebsh-Gordan coefficients:

ak(m,m′,m′′,m′′′) =
4π

(2k+1)

k

∑
q=−k
〈lm|Ykq|lm′〉〈lm′′|Y ∗kq|lm′′′〉 (2.98)

where the coefficients Fk are the radial Slater integrals can be obtained from the Coulomb

kernel [65]. For d electrons only F0 , F2 , and F4 are required to compute the Vee matrix

elements while for f electrons F6 is required .

The effective Coulomb and exchange interactions, U and J, can be obtained as :

U =
1

(2l +1)2 ∑
m,m′
〈m,m′|Vee|m,m′〉= F0 (2.99)

J =
1

2l(2l +1) ∑
m,m′
〈m,m′|Vee|m′,m〉=

F2 +F4

14
(2.100)

These equations are often used for the evaluation of Slater integrals using the values of U and

J.

The Dudarev method

The LDA+U method introduced by Lichtenstein is based on multi-band Hubbard model. Later

a much simpler expression for EHub is presented by Dudarev et. al. [66]. This simplified ex-

pression can be obtained from complete Lichtenstein LDA+U formulation by retaining only
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lower order Slater integral F0 and neglecting other terms: F2 = F4 = J = 0. Therefore we

neglect the non-sphericity of the electronic interactions and also neglect the exchange interac-

tion (J).

The energy functional then can be calculated using the Eq.(2.96) and Eq.(2.97),

EU [
{

nIσ

mm′
}
] = EHub[

{
nI

mm′
}
]−Edc[

{
nI}]

= ∑
I,σ

U I

2
Tr[nIσ (1−nIσ )] (2.101)

In the above equation the expression depends on the trace of occupation matrices and of their

products which signifies that in the simper formalism the rotational invariance still exist. This

simplified version of LDA+U method has been successfully used for most materials where

it shows similar results as obtained from the fully rotationally invariant one [cf. Eq.(2.96)

and Eq.(2.97)]. Because of the spin-diagonal form of this simplified LDA+U approach, it is

customary to attribute the Coulomb interaction U an effective value that accounts for the ex-

change correction: Ue f f =U− J. [67]

2.2 First Principles Method for Phonons

Phonons are the fundamental particles describing vibrations in solid state materials. They

define the properties of solids at finite temperature. Phonons are driving forces for quite a

number of phenomena e.g., the thermal expansion, heat conductivity, temperature dependence

of mechanical, electric properties, phase transitions. Phonons play a crucial role in a number

of microscopic and bulk phenomena such as inelastic coherent and incoherent neutron scat-

tering, coherent inelastic x-ray scattering, inelastic nuclear absorption, infrared absorption,

raman scattering etc. So studying phonons is very important for understanding new materials.

The theory of the lattice dynamics originates from Born and Huang [68]. It assumes that the
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interatomic potential energy is a function of instantaneous position of atomic nuclei.

At T=0, the ground state energy E as a function of atomic positions R(n,µ), where n is the in-

dex of primitive unit cell and µ is the atomic index, can be expanded over small displacements

u(n,µ) up to harmonic term. Let us assume that an atom displaces by u(m,µ). Then the

Hellmann-Feynman force on all the other surrounding atoms of the supercell can be expressed

as

Fi(n,µ) =− ∑
m,ν , j

Φi, j(n,µ,m,ν)u j(m,ν) (2.102)

This relation connects the forces on atoms with the force constant matrices, Φi, j(n,µ,m,ν)

and atomic displacement. If we have information regarding forces and atomic displacements

we can compute force constant matrix elements Φi, j(n,µ,m,ν). Subsequently, the dynamical

matrix can be defined as

D(k; µ,ν) =
1

√mµmν
∑
m

Φi, j(0,µ;m,ν)exp(−2πik · [R(0,µ)−R(m,ν)]) (2.103)

where mµ and mν are the masses of atoms and k is the wave vector. The summation runs

over all primitive cells. The equation of motion of vibrating atoms can be solved by solving

eigen-value equation

D(k)φ(k, j) = ω
2(k, j)φ(k, j) (2.104)

which gives the phonon frequencies ω and eigenvectors φ .

Solution of the eigenvalue equation, using first-principles based method, can be done either

by using (a) finite displacements method or (b) density functional perturbation theory (DFPT)

method.

2.2.1 Finite Displacement Method

Following this method, first we need to construct a supercell according to our need of high-

symmetry k-points for which phonon modes are to be calculated. Phonons are calculated by
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diagonalizing the dynamical matrix Eq.(2.103), which contains force constant Φi, j which can

be obtained, as shown in Fig. 2.11, as

Φi, j(n,µ,m,ν) =−
Fi(n,µ,u j(m,ν))

u j(m,ν))
(2.105)

Figure 2.11 Figure is showing supercell containing many primitive cells along with
atoms which are displaced by finite amount from their equilibrium position.

In principle, interactions between pairs of atoms at any separations up to the infinite are re-

quired. But in practice the non-Coulombic contribution decays rapidly with distance. Fur-

thermore, it can be shown that for a supercell calculations of a dynamical matrix for all atom

pairs within one supercell is sufficient to give phonons at all wavevectors commensurate with

the supercell. The forces are calculated to include all long-range contributions over other su-

percells. The calculation of phonons at Γ point (infrared-active (IR) phonons) in the Brillouin

zone is done with only a single primitive cell.

The dynamical matrix D(k)φ(k, j) for the supercell can be determined by making small dis-

placements of one atom at a time, and calculating the Hellmann-Feynman (HF) forces exerted
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on all other atoms in the cell. The force constants Φi, j then can be calculated using Eq.(2.105).

One can use the symmetry elements of the structure to minimize the number of simulation

needed for ab initio calculations. Ab initio calculations of phonon frequencies and phonon

modes are very useful in predicting macroscopic properties and phase transitions.

2.2.2 Density Functional Perturbation Theory (DFPT)

There are many physical properties which depend on system response to a perturbation. Phonon

is one of such properties which depend on the response of the system to a perturbation. Den-

sity functional perturbation theory (DFPT) [69, 70] is very powerful and flexible theoretical

method that can do calculation of such properties within the density functional framework.

Eq.(2.105) can also be written in terms of energy as

Φi, j(n,µ,m,ν) =
∂ 2E[{R}]
∂Rµ

n ∂Rν
m

(2.106)

Within the framework of Kohn-Sham DFT the energy functional can be written as

E[{R}] = T0[ρ]+EHartree[ρ]+Exc[ρ]+Eext [ρ]+EN({R}) (2.107)

with the constraint that the integral of ρ(r) equals the number of electrons Ne. The first term

on right hand side is kinetic energy term, second term is Hartree potential energy, third term is

exchange-correlation energy, fourth term is external potential energy due to external potential

Vext(r) and the last term is the Madelung energy. The most important consequence of the

variational nature of DFT is that the Hellmann-Feynman forces are still valid. The Hellmann-

Feynman force in DFT can be expressed as

FDFT
I =−

∫
ρ(r)

∂Vext

∂RI
dr− ∂EN

∂RI
−
∫

δE
δρ

∂ρ

∂RI
(2.108)

The last term in the equation vanishes exactly due to the condition that functional derivative of

E[{R}] is a constant. Forces in KS-DFT can therefore be calculated from the electron charge-

density. The direct calculation of force constant matrix is possible using density functional
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perturbation theory (DFPT).

An explicit expression for the force constants can be obtained by differentiating the Hellmann-

Feynman forces with respect to atomic coordinates,

∂ 2E[{R}]
∂RI∂RJ

=
∫

∂ρ

∂RJ

∂Vext

∂RI
dr+δIJ

∫
ρ(r)

∂ 2Vext

∂RI∂RJ
dr+

∂ 2EN [{R}]
∂RI∂RJ

(2.109)

Therefore to calculate the force constant matrix we need to have knowledge of the electronic

charge density ρ and its linear response to the distortion of the atomic geometry
∂ρ

∂RI
. The

charge density response is calculated by linearizing expression for charge density in terms of

Kohn-Sham orbitals, Kohn-Sham eigenvalue equations and the Kohn-Sham effective potential.

∂ρ

∂RI
= 4Re

N/2

∑
n=1

ψ
∗
n

∂ψn

∂RI
(2.110)

The index m and n represents quantum numbers.

After linearization we obtain a set of self-consistent linear equations regarding charge-density

response and potential response. Efficient iterative algorithms like conjugate gradient or min-

imal residual methods can be used to obtain solution of the linear system. The first-order

perturbation (linear response) theory uses approximation for
∂ψn

∂RI
as given in the following,

∂ψn

∂RI
= ∑

m 6=n
ψm

1
εn− εm

〈
ψm|

∂Ve f f

∂RI
|ψn

〉
(2.111)

where Ve f f is the effective Kohn-Sham potential. Using rigorous mathematical treatment the

energy functional can be written in terms of perturbing potential and of perturbed Kohn-Sham

orbitals. The first-order term gives the Hellmann-Feynman forces. This approach forms the

basis for DFPT in which the force constant matrix elements are expressed as minima of suit-

able functionals.

We have used both finite displacement method and DFPT method for the calculation of phonons

in the thesis.
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Chapter 3

Study of Spin System YMn2O5

3.1 Background

RMn2O5[1] (R=Y,Tb,Ho...) series of materials are well-known as improper multiferroic mate-

rials due to the coexistence of magnetic as well as ferroelectric order in them [2]. In this class

of materials, magnetization acts as primary order parameter and drives the polarization which

acts as secondary order parameter, thereby forming the coupling between the two order pa-

rameters through magnetoelectric effect. We have focused on a particular compound YMn2O5

in this series which is a frustrated spin system. In this chapter we have studied the detailed

nature of magnetism of this compound using first-principles based DFT as understanding the

magnetism forms a key aspect of this compound. We have computed the magnon dispersion

curve using an effective spin Hamiltonian, which is compared with the data obtained from

inelastic neutron scattering.

This chapter is based on Phys. Rev. B 84, 054444 (2011)
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3.2 Introduction

Multiferroic materials attracted attention of scientists for their possible applications like mag-

netic computer memory which is switchable by electrical field. Transition metal oxide com-

pounds, particularly those with frustrated magnetism [3], often exhibit finite ferroelectric po-

larization driven by magnetic ordering thereby exhibiting a magnetoelectric coupling. YMn2O5

is one such compound in which the primary order parameter is magnetization which drives

the polarization. Ferroelectricity in the compound is induced by the frustrated magnetic struc-

tures.

It is reported that the compound YMn2O5 undergoes a series of magnetic phase transitions

upon changing temperature. With the lowering of temperature, at around 44 K tempera-

ture, the compound shows transition to an incommensurate antiferromagnetic phase, which

is a modulated phase with wave vector k (qx,0,qz) from the high temperature paramagnetic

phase [4]. With further lowering of temperature at around 39 K the incommensurate phase

becomes commensurate antiferromagnetic phase with wave vector k (
1
2
,0,

1
4
) with finite fer-

roelectric polarization along the b-axis [4, 5, 6, 7]. Upon further cooling, at around 19 K,

low-temperature incommensurate antiferromagnetic phase with wave vector k (0.48,0,0.29)

appears together with reduction in the magnitude of polarization [4, 7, 8].

The set of above mentioned phase transitions appears due to the magnetic frustration of the

spins associated with 3d electrons of Mn ions in YMn2O5. This also drives ferroelectricity in

YMn2O5 [9]. Therefore, magnetism is the reason behind almost all the interesting phenomena

in this compound. In this context, understanding of magnetic exchange interactions in the Mn

sublattice in YMn2O5 is important.

TbMn2O5, another compound in the RMn2O5 series, is similar to the YMn2O5 compound in

terms of crystal structure and magnetic behavior. Ab initio total energy method has been used

to compute the magnetic exchange interactions in Mn sublattice of the compound TbMn2O5
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by considering few spin configurations [10]. Also, by fitting the experimental inelastic neutron

scattering data magnetic exchange interactions have been calculated for YMn2O5[11]. How-

ever, all these approaches are based on some fitting procedure, either fitting to the energies of

spin-configurations or fitting to scattering intensity scanned along specific directions, which

may lead to non-uniqueness of fitting parameters. In this study we have employed Nth order

muffin-tin orbital (NMTO) downfolding method which is capable of estimating effective Mn-

Mn hopping integrals and onsite energy values in a first principles way. We have computed the

magnetic exchange interactions in YMn2O5 from the information of effective Mn-Mn hopping

integrals and energy level separations, and employing extended Kugel-Khomskii model[12].

3.3 Crystal Structure

The compound YMn2O5 (and TbMn2O5) has orthorhombic primitive unit cell [see Fig.3.1].

The space group of the compound YMn2O5 is Pbam (space group no. 55)[13]. The unit cell

contains four formula units, i.e., four Y, eight Mn, twenty O atoms. The compound has com-

plex crystalline structure with two inequivalent Mn sites labeled as Mn1 and Mn2 (four Mn1

and four Mn2 in the unit cell) [Fig.3.1]. There are four inequivalent oxygen atoms labeled as

O1, O2, O3 and O4. There are four O1, four O2, four O3 and eight O4 per unit cell [Fig.3.2].

Mn1 ion is surrounded by oxygen atoms which form octahedral coordination environment.

On the other hand Mn2 is surrounded by oxygen atoms which form square-pyramidal coordi-

nation environment.

To understand the complex crystal structure of the compound we first explain the octahedral

and square-pyramidal environment in the following.

Mn1O6 octahedra : There are three inequivalent oxygen atoms O2, O3 and O4 surrounding
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Figure 3.1 The unit cell of YMn2O5 projected onto ab-plane is shown on the left
panel. The pentagon geometry formed by the connection of Mn1-Mn2-Mn1-Mn2-
Mn2 is shown on the right panel. The pentagon geometry gives rise to frustration.

the Mn1 atom. So there are three different bond lengths Mn1-O associated to Mn1O6 octa-

hedra leading to distorted octahedra. The octahedra is connected to the square-pyramid via

corner shared oxygen atoms O3 and O4 along approximately a- and b-axis. The octahedra are

connected to each other via edge-shared oxygen atoms O2 and O3 along c-axis forming linear

chain as shown in Fig.3.2. The edge shared connection of octahedra via O3 is within the unit

cell.

Mn2O5 square-pyramid : There are three oxygen atoms O1, O3 and O4 surrounding the Mn2

atom. The square-pyramid is not regular but distorted. The two square-pyramids are con-

nected to each other via edge-shared oxygen atoms O1 at the middle of the unit cell.

Both Mn1O6 and Mn2O5 are linked through edge-sharing and corner-sharing network leading

to different magnetic exchange interactions through oxygen mediated super-exchange path-

ways as shown in Fig. 3.2. The Mn1-Mn2-Mn1-Mn2-Mn2 connection forms a pentagon

geometry which gives rise to magnetic frustration due to competitive antiferromagnetic inter-
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Figure 3.2 Mn1O6 octahedra and Mn2O5 square-pyramids are connected via oxygen
atoms. Edge shared octahedra runs along c-axis. The cell is projected onto ac-plane.
Various oxygen atoms are labeled according to their positions in the cell surrounding
octahedra and square-pyramids.

actions as shown in the right panel of Fig. 3.1. There are two such pentagon geometry in each

unit cell as shown in Fig. 3.1. The Y atoms are shown in the Fig. 3.1 by dark-green balls

which separate the two Mn1/Mn2 layers.

Experimental data show that the structure of YMn2O5 has space group Pbam, which includes

spatial inversion (R−1) symmetry. It is surprising that a crystal with inversion symmetry would

develop spontaneous polarization. However, sometimes crystal space group can be centrosym-

metric but the magnetic space group may not. It might be possible that "electronic" inversion

symmetry is broken because of the special magnetic ordering. Then electronic symmetry

breaking will further couple to the lattice and lead to lattice distortion. In the ground state spin

configuration of YMn2O5 due to the spin chain · · ·Mn1-Mn2-Mn1· · · along b-axis the crystal

does not possess inversion symmetry (R−1). Therefore, instead of having centrosymmetric

structure special magnetic ordering helps to generate large polarization. So, for YMn2O5 the

actual ground state space-group is suggested to be Pb21m [10]. Analysis of phonon modes in
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similar compound TbMn2O5 confirms the spin-configuration to be Pb21m [14].

3.4 Results

3.4.1 Basic electronic structure

The electronic structure of the compound YMn2O5 is studied by using both LMTO and VASP.

In the Fig.3.3 the total density of states (DOS) calculated under spin-polarized situation with

GGA approximation is shown. The Fermi energy is set at zero (EF ) of the energy axis. The

region near Fermi energy is dominated by Mn1- and Mn2-d orbitals.

Figure 3.3 Total spin-polarized density of states of YMn2O5 calculated under GGA
approximation. Dominant contributions of various orbital degrees of freedom are
shown in the figure.

Mn-d and O-p hybridized density of states extends from -7.5 eV to 3.5 eV along energy axis.

As the Mn1 atom is in the octahedral coordination of oxygens the octahedral crystal field

split the Mn1-d into three fold degenerate t2g and two fold degenerate eg levels. The square-
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pyramidal environment split the five Mn2-d levels further as shown in the Fig.3.3. From the

DOS we see that in the majority spin channel (upper panel in the Fig.3.3) the Mn1-t2g is com-

pletely filled while Mn1-eg is completely empty. The Mn2-dxy,yz,x2−y2,3z2 are completely filled

while other are empty. On the other hand, in the minority spin channel in DOS all the Mn1-d

and Mn2-d levels are completely empty. There is a finite gap at the fermi level EF of the order

of ∼ 0.05 eV resulting an insulating solution. The various orbital contributions are calculated

by calculating projected density of states setting local coordinates with z-axis along Mn-O4,

y-axis along Mn1-O3 for Mn1O6 octahedra and z-axis along Mn2-O3, y-axis along Mn2-O4

for Mn2O5 square-pyramid.

The spin magnetic moments are also calculated for Mn1 and Mn2 ions under spin-polarized

situation which gives ∼ 2.81 µB at Mn1 and ∼ 3.45 µB at Mn2 site.

From both electronic DOS and magnitude of moment values we see the charge disproportion-

ate situation between Mn1 and Mn2 with a nominal valence of Mn4+ (d3) at Mn1 site and

Mn3+ (d4) at Mn2 site.

The calculation considering the antiferromagnetic (AF) structure consisting of zigzag AF

chains running along the a direction, as described in Ref. [15], further increased the band

gap to about 0.7 eV.

3.4.2 Magnetic Model

3.4.2.1 NMTO-downfolding

After the discussion on the basic electronic structure of the compound we move to the study

of magnetic exchange interactions in Mn sublattice. To study the magnetic exchange interac-

tions we have used the NMTO-downfolding method as described in the methodology chapter

2.1.5.2. LMTO method is used to do self-consistent calculation to do non-self-consistent elec-
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tronic structure. Then starting from self-consistently generated all electron Hamiltonian we

construct few band Hamiltonian which involves only Mn-d degrees of freedom employing

NMTO-downfolding method. As we already know that NMTO-downfolding method is able

to produce few band Hamiltonian by means of energy-selective procedure where it integrates

out the degrees of freedom that are not of interest. As we are interested in studying inter-

action among Mn sites we have kept only Mn-d degrees of freedom in the Hamiltonian and

downfolded (integrated out) all other degrees of freedom like O-p, Y-s etc. In this way we

construct new basis sets NMTOs which can span only Mn-d dominated states out of all states

and nothing else. So effectively NMTOs act as Wannier functions corresponding to Mn-d

only Hamiltonian. The tight-binding Hamiltonian defined in the basis of Mn-d Wannier func-

tions provide effective Mn-Mn hopping integrals and onsite energies. As the O-p characters

form the tail of downfolded Mn-d only NMTOs, the effective Mn-Mn hopping integrals in the

downfolded basis have the chemical information of the hopping path connecting two Mn sites.

Figure 3.4 (a) The interactions J1 and J2 along c-axis. (b) The interactions J3, J4
and J5 in the ab-plane. (c) The difference between J3 and J4 interactions comes only
due to difference in the angles connecting Mn1 and O and Mn2, which are similar in
magnitude.
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Direction OMn1 Mn1/Mn1 eg1 t2g1 t2g2 eg2 t2g3

eg1 2.438 0.000 0.000 0.000 0.000

t2g1 0.000 -0.107 0.000 0.000 0.000

[0.00 0.00 0.00] t2g2 0.000 0.000 -0.085 0.000 0.000

eg2 0.000 0.000 0.000 2.534 0.000

t2g3 0.000 0.000 0.000 0.000 -0.068

Direction OMn2 Mn2/Mn2 dxy dyz d3z2−1 dxz dx2−y2

dxy 0.574 0.000 0.000 0.000 0.000

dyz 0.000 -0.193 0.000 0.000 0.000

[0.00 0.00 0.00] d3z2−1 0.000 0.000 0.016 0.000 0.000

dxz 0.000 0.000 0.000 2.352 0.000

dx2−y2 0.000 0.000 0.000 0.000 -0.098

Table 3.1 Onsite energy matrix are represented by OMn1 or OMn2. The energies are
expressed in the unit eV. The directions are given in the unit of lattice constant.
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The dominant hopping integrals are estimated to be those connecting Mn1 and Mn2 in the

ab-plane, as shown in Fig. 3.4b. The connection of Mn1 and Mn2 is the pentagon as shown

in Fig.3.1. The interaction denoted by J3 (the pink line in the Fig.3.4b) is between the Mn1

and Mn2 via corner shared oxygen. The interaction J4 (the cyan line in the Fig.3.4b) is, also,

between Mn1 and Mn2 via corner shared oxygen. The only difference between J3 and J4

comes from the angle of interaction Mn1−O−Mn2 which is ∼ 132◦ for J4 and ∼ 123◦ for

J3 interaction. The interaction J5 (blue line in the Fig.3.4b) involves Mn2 sites only via edge

shared oxygen atoms at the middle of the cell. There are out of plane interactions along c-axis

J1 (brown line in Fig.3.4a) and J2 (yellow line in Fig.3.4a) connecting Mn1O6 octahedra via

edge shared oxygen atoms forming linear chain · · · · -J1-J2-J1-J2-· · · · . The Mn1-Mn2 distance

differentiates among J1 and J2 interactions.

Table 3.1 shows the onsite energies at Mn1 and Mn2 sites as obtained from NMTO-downfolding

method. The states at Mn1 site are grouped together into t2g’s and eg’s with tiny energy dif-

ference ∼ 0.02−0.1 eV within themselves. The states at Mn2 site can be arranged according

to increasing energies as dyz, dx2−y2 , d3z2−1, dxy and dxz with small energy difference between

dyz, dx2−y2 , d3z2−1.

Once we have the hopping integral values and onsite energy values we can use them within

the extended Kugel-Khomskii-like model. The procedure is explained in the following con-

sidering the example of the exchange interaction connecting Mn1 and Mn2. To calculate ex-

change interaction we employ extended Kugel-Khomskii-like model where we take difference

of energy costs for hopping of electrons from Mn1 to Mn2 site for parallel and anti-parallel

alignment of spins.

The expression for the energy cost for hopping of electrons corresponding to parallel align-
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Figure 3.5 Superexchange processes connecting Mn1 and Mn2 [left panel and right
panel]. The diagrams represent exchange interactions J3 and J4.

ment of spins at Mn1 and Mn2 sites is given by

∆EMn1−Mn2
Ferro = −

3

∑
l=1

2t2
l,dxz

U− JH +∆l,dxz

−
4

∑
r=1

∑
eg

2t2
r,eg

U− JH +∆r,eg

(3.1)

∆EMn1−Mn2
Anti f erro = −

3

∑
l=1

5

∑
p=1

2t2
l,p

U +∆l,p
−

4

∑
r=1

∑
eg

2t2
r,eg

U +∆r,eg

(3.2)

where, the summation over l, r and eg in the first expression runs over three t2g states at

Mn1 site, dyz, dx2−y2 , d3z2−r2 , dxy states at Mn2 site, and two eg states at Mn1 site respec-

tively. Similarly, the summation over l, p, r and eg in the first expression runs over three t2g

states at Mn1 site, five d states at Mn2 site, dyz, dx2−y2 , d3z2−r2 , dxy states at Mn2 site, and

two eg states at Mn1 site respectively. The magnetic exchange interactions calculated using

NMTO-downfolding method are compared with the results reported for similar compound

TbMn2O5 in the literature [10] in the Table 3.2. The comparison of the exchange interactions

for YMn2O5 with those for TbMn2O5 are well justified because of the fact that the two com-

pounds have the similar crystal structure and magnetic behavior. Use of Kugel-Khoskii model

requires knowledge of values of Hubbard U and Hund’s coupling JH . We have used U to be

5 eV and JH to be 1 eV. All the in-plane exchange interactions are found to be antiferromag-

netic. Only in-plane interactions are shown in the Table 3.2 because the dominant interactions

are in-plane interactions and the out-of-plane interactions (J1 and J2) are very weak in magni-
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J3 J4 J5

NMTO-downfolding -4.15 -4.61 -1.63

Wang et al. -0.45 -4.92 -1.85

Table 3.2 Magnetic exchange interactions (in meV), J3, J4 and J5 computed using the
extended Kugel-Khomskii model and NMTO-downfolding derived on-site energies
and hopping matrix elements, as compared to that computed by Wang et al.[10] for
TbMn2O5.

tude compared to the in-plane interactions. Furthermore, we need to compare the results with

the results already reported in the literature [10] where the out-of-plane interactions are even

neglected without calculating their numerical values. Comparing the two parameter sets, as

shown in Table 3.2, we find that both approaches give J4 to be strongest interaction with J5

about a third of J4. J3, on the other hand, is reported to be much weaker compared to J4 in

the reference [10] while NMTO-downfolding approach gives its magnitude to be comparable

to J4. NMTO-downflding method is giving J3/J4 ∼ 0.9 while the reported values in reference

[10] gives J3/J4 ∼ 0.09.

3.4.2.2 Total energy calculation

In order to understand the origin of difference in exchange interactions in different approaches,

we explored energetics of the spin configurations in more detail. For this we have considered

2×1×1 supercell with 16 Mn atoms which gives rise to 216 possible spin-configurations. The

magnetic unit cell together with the atoms labeled with numbers are shown in the figure 3.6.

Considering the Heisenberg Hamiltonian description of the spin configurations we found that

out of all possible spin-configurations, only 166 spin-configurations are energetically non-

degenerate. On the other hand, Wang et. al considered only eight spin-configurations to fit

their energies to the energies of the Heisenberg Hamiltonian formed out of Mn spins. In this
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Figure 3.6 The magnetic unit cell considered for total energy calculations of different
magnetic configurations. Different Mn atoms have been numbered.

procedure of estimating magnetic exchange interactions, known as total energy method, the

LDA total energies of various spin-configurations are fitted to the energies of the Heisenberg

Hamiltonian made up of Mn spins. A few representative results are presented in the Table 3.3.

Considering different sets of spin configurations to extract J’s we find the results to depend

sensitively on choice of spin configurations. For example, one subset of results (the first two

panels in Table 3.3) are Wang et. al. like giving J3� J4 while other subsets of results (the

other two panels in Table 3.3) are NMTO-like giving J3' J4. This points to the nonuniqueness

of the parameter sets obtained from fitting of total energies.

To check the influence of J’s on properties we calculated the magnon spectra as presented in

the following subsection.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4E

FM + + + + + + + + + + + + + + + + 0

Wang et. al. AFM1 - - - - + + + + + + + + + + + + 281

like AFM2 + + + - - - - + + + + - - - - + -4

AFM3 - + + + + - - - - + + + - - - - 62

Exchange Integral (meV) J3 =-0.17 J4 =-3.19 J5 =-1.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4E

FM + + + + + + + + + + + + + + + + 0

Wang et. al. AFM1 - - - - + + + + + + + + + + + + 281

like AFM2 + + + - - - - - - + + + + + + - -151

AFM3 - - + - + - + + - + - + - + + - 12

Exchange Integral (meV) J3 =-0.50 J4 =-3.40 J5 =-1.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4E

FM + + + + + + + + + + + + + + + + 0

NMTO like AFM1 - - - - + + + + + + + + + + + + 281

AFM2 + + + - - - + + + - - - + + + - 270

AFM3 + - - - - + + + - - - - + + + - 187

Exchange Integral (meV) J3 =-3.92 J4 =-4.33 J5 =-1.31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4E

FM + + + + + + + + + + + + + + + + 0

NMTO like AFM1 - - - - + + + + + + + + + + + + 281

AFM2 - - - - + + + + + + - - - - - - 24

AFM3 - + - + + - + - + - + - + - + + 23

Exchange Integral (meV) J3 =-3.73 J4 =-4.19 J5 =-1.44

Table 3.3 Few representative spin-configurations out of all possible spin-
configurations for Mn spins. The upper two panels are representative sets giving
results similar to those reported in Wang et. al.[10] while lower two panels give
results similar to those obtained from NMTO-downfolding method. The numbers
1−16 in the Table represent 16 Mn ions in the supercell.
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3.4.3 Magnon dispersion

To calculate the magnon spectra, we first constructed a spin model corresponding to the ground

state spin-configuration as shown in the Fig.3.7.

Figure 3.7 The spin model considering the ground state spin configuration for
YMn2O5.

We used Holstein-Primakoff transformation [16] to convert from spin to boson representa-

tion. We diagonalized the constructed matrix using numerical implementation of Bogolubov

transformation [17]. In this technique as input we need magnetic exchange parameters. We

have considered the magnetic exchange interactions restricted only within the magnetic cell

shown in Fig.3.7. There are four interactions J1, J3, J4 and J5 within the cell. The parameter

set calculated by Wang et. al. [10] did not consider J1. However, in order to stabilize the

ground state commensurate spin-configuration as reported in reference [6] we have taken into

account J1 only. J1 comes out to be ferromagnetic in nature with magnitude of J1 ≈ 0.5 J4

from NMTO-downfolding calculation. The ordering of the magnetic configurations for our

case is (1/2,0,0) instead of (1/2,0,1/4) as observed experimentally because we have neglected
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out-of-plane interactions beyond J1.

The spin Hamiltonian defined in the magnetic cell is H = Hintra +Hinter, where

Hintra = ∑
i j

J5(S3,i, j ·S4,i, j +S1,i, j ·S6,i, j)

+ J3(S2,i, j ·S3,i, j +S1,i, j ·S5,i, j)

+ J4(S4,i, j ·S5,i, j +S1,i, j ·S2,i, j)

+ J1(S2,i, j ·S7,i, j +S5,i, j ·S8,i, j)

+ (J4S1,i, j ·S7,i, j + J3S3,i, j ·S7,i, j)

+ (J3S1,i, j ·S8,i, j + J4S4,i, j ·S8,i, j)

while

Hinter = ∑
i j

J3(S4,i, j ·S2,i, j+1 +S5,i, j ·S6,i, j+1)

+ J4(S5,i, j ·S3,i+1, j +S6,i, j ·S2,i+1, j)

+ J3(S6,i, j ·S5,i, j−1 +S2,i, j ·S4,i, j−1)

+ J4(S2,i, j ·S6,i−1, j +S3,i, j ·S5,i−1, j)

+ (J4S3,i, j ·S8,i−1, j + J3S4,i, j ·S7,i, j+1)

+ (J3S6,i, j ·S8,i, j−1 + J4S6,i, j ·S7,i+1, j)

+ (J4S7,i, j ·S6,i−1, j + J3S7,i, j ·S4,i, j−1)

+ (J3S8,i, j ·S6,i, j+1 + J4S8,i, j ·S3,i+1, j)

where Hintra is the Hamiltonian corresponding to the interactions restricted to the central cell

i, j, while Hinter is the Hamiltonian corresponding to interactions connecting sites within i, j

cell to neighboring cells. Sn,i, j is the spin at nth Mn site within the cell i, j. The atoms labeled

as 1− 8 in the Fig.3.7 are the basis of the cell labeled as i, j. The neighboring unit cells are

labeled as i±1, j or i, j±1.
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Figure 3.8 The Magnon dispersion curves are shown along [100] and [010] direc-
tions. The unit cell along with J’s is also shown on right hand side of the figure to
show that [100] is approximate direction of J3 and [010] is approximate direction of
J4.

We have computed the magnon dispersion along the direction [100] and [001]. Magnon dis-

persion is calculated considering the exchange parameters as obtained from NMTO-downfolding

method, as given values of Wang et. al. [10] and also that given by Kim et. al. [11]. The

computed magnon dispersion is compared with the magnon dispersion measured by inelastic

neutron scattering experiment. The comparison is shown in the Fig.3.8.

The top most panels of Fig.3.8 show the magnon curves calculated using J values obtained

from NMTO-downfolding method. The second panels from the top show magnon curves

calculated from J values reported by Wang et. al.. The third panels show magnon curves

calculated using J values reported by Kim et. al.. The bottom panels show the experimentally
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measured dispersions. All of the calculated magnon dispersion curve has eight branches, due

to the multi-atom basis in the unit cell [18]. The experimental spectra captures only the lowest

two branches, the higher ones are not captured due to the instrumental limitations of the cold

triple-axis spectrometer. In Fig. 3.8 we have shown only the lowest branches of calculated

magnon curves for the sake of comparison with experimental curves.

Considering Fig. 3.8, we notice that while the theoretically calculated dispersions along [100]

differ from experiment for all chosen parameter sets, the theoretical results obtained using

NMTO-derived parameter sets, along [010] are in much better agreement with the experi-

ment, compared to other parameter sets. The parameter set of Wang et al.,[10] shows no

dispersion at all along the [010] direction, in sharp contrast with the experimentally measured

data. We note, that the vector connecting Mn1 and Mn2 sites, corresponding to J3 interaction

is primarily directed along the b direction, while the vector connecting Mn1 and Mn2 sites,

corresponding to J4 interaction is primarily directed along the a direction (cf. Table 3.1). The

lack of dispersion of the magnon modes along the [010] direction considering the parameter

sets given by Wang et al.’s total energy calculations [10] is therefore expected as the value of

the parameter J3 was rather small in Wang et al.’s parameter set [10]. The value of the pa-

rameter J3 was also small in the parameter set of Kim et al.,[11] producing also dispersionless

magnon spectra along [010] direction. We note that the measured magnon spectra of YMn2O5

in the low-temperature incommensurate state at higher energies (10−20 meV), to which the

fit was carried out by Kim et al. [11] did not involve the dispersions along [010] direction.

The improvement of the description of dispersion along [010] direction using NMTO-derived

parameters, therefore, shows a clear evidence of the superiority of the NMTO-derived param-

eter sets over the existing parameter sets with small values of J3. [10, 11] Finally, though the

NMTO-downfolding-derived parameter sets capture the behavior of the experimental spectra

along [010] direction satisfactorily, the description along [100] direction is still not satisfac-
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tory. This may be due to the neglect of magnon-phonon interactions, which are shown to be

important in these systems [18] as well as neglect of single-ion anisotropy in the model, re-

sponsible for the helicoidal modulation in experimentally observed spin structure. Inclusion

of magnon-phonon interaction through phonon calculations for different magnetic configura-

tions is prohibitively difficult and will be taken up at a later date. At the end, it is interesting to

note that in spite of the simplistic nature of our spin model, it brings out nicely the importance

of the magnetic exchange interaction, J3.

3.4.4 Chemical point of view : Wannier function

Having established the goodness of the NMTO-derived parameter set with substantially large

value of magnetic exchange interaction J3 in terms of the calculated magnon spectra and its

comparison with inelastic-neutron-scattering data, we provide further arguments based on the

involved superexchange paths. As found by the NMTO study, the magnitude of J3 is compara-

ble to that of the largest interaction, J4, while the previous studies [10, 11] report substantially

smaller value of J3 compared to J4. We argue in the following that from a chemical point of

view, it is logical to have J3 comparable to J4. It might be noted that both J3 and J4 interac-

tions connect a pair of Mn1 and Mn2 sites through corner-shared oxygens, with a very similar

Mn-O-Mn bond angle (123◦ for J3 and 132◦ for J4 interaction). One would, therefore, expect

the involved superexchange paths to be similar in two cases, giving rise to a similar nature of

magnetic exchanges.

This expectation turned out to be true as shown in Fig. 3.9, where the overlap of two represen-

tative Mn-d Wannier functions placed at Mn1 and Mn2 sites have been plotted, corresponding

to interactions ”3” (left panel) and ”4” (right panel) respectively. It shows in both cases that the

overlap of the Wannier functions centered at Mn1 and Mn2 sites gives rise to equally strong

superexchange paths formed by the overlap of weights situated at the connecting oxygen site.
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Figure 3.9 The Mn-d Wannier functions are plotted along directions of exchange
interactions J3 (left panel) and J4 (right panel).

3.5 Conclusion

To understand the magnetic interactions we have employed the first principle based meth-

ods along with the model Hamiltonian calculation for the compound YMn2O5. Our results

highlights few important magnetic exchange interactions which play an important role in the

magnetism of the compound. In this respect, our results differ from the results reported ear-

lier [10] for the related compound TbMn2O5 using total energy calculation and that obtained

by fitting the inelastic-neutron-scattering data for the low-temperature incommensurate phase

of YMn2O5 [11]. Our first-principles derived parameters reproduce the magnon dispersion

curves along [010] direction as observed by inelastic-neutron-scattering experiment for com-

mensurate phase. This justifies the importance of the J3 interaction in the magnetism of the

compound as pointed out in our calculation. The agreement of the calculated magnon disper-

sion along [100] is not in satisfactory agreement with the experimental dispersion. This may

further be improved by including lattice contribution through the spin-phonon coupling effect.
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Chapter 4

Study of Unusual Insulating Phase

in Double Perovskite Compound

La2CoMnO6

4.1 Background

The perovskite structure ABX3, where A is non-magnetic cation, B is magnetic cation and X

is an anion, have generated long standing interest due to their subtle variations in the crystal

structures and its effect on their physical properties. Double perovskites are the derivative of

perovskite compounds. Substitution of cation B′ for B leads, in general, to the solid solution

AB1−xBx′X3. When x=0.5 and B′ and B are sufficiently different in charge and/or size, the

B-cation ordering may be achieved, with B′ and B having rock-salt ordering. The formula for

ordered double perovskite structure can be written as A2BB′X6. In this chapter we have stud-

ied electronic structure of a double perovskite compound La2CoMnO6, which is reported to

This chapter is based on Phys. Rev. B 84, 035131 (2011)
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be ferromagnetic insulator with a Tc of 240 K [1]. Ferromagnetic insulators are rare in nature.

Even it is very rare to find ferromagnetic insulators with relatively high Curie temperature.

There are very few known examples like, EuO (Tc ∼ 77 K)[2], CdCr2S4 (Tc ∼ 90 K)[3] have

Curie temperature much below room temperature.

4.2 Introduction

The double perovskite compound La2CoMnO6 (LCMO) has been synthesized with ordered

arrangement of 3d transition metals Co and Mn [4]. The compound is reported to be fer-

romagnetic Curie temperature Tc ∼ 240 K for the perfectly ordered Co/Mn phase [5]. For

the disordered Co\Mn phase the Curie temperature is Tc ∼ 150 K along with spin-glass like

behavior. There has been a long debate about the precise valence of Co and Mn ions. X-ray

absorption spectroscopy (XAS) as well as X-ray absorption near-edge spectroscopy (XANES)

experiments [4, 6] have confirmed that in the ordered phase the precise valence of Co and Mn

are 2+ (d7) and 4+ (d3) respectively, while for disordered phase valences of Co and Mn are

3+ and 3+ respectively. X-ray photoemission experiment on the thin film of LCMO reported

total magnetic moment to be 5.7 µB per f.u. with high spin states for Co2+ and Mn4+ [7].

Using Hund’s rule arranging spins associated with valence electrons at Co and Mn ions at the

3d-levels it leads to the partially filled situation at Co site, as shown in Fig.4.1. Octahedral

surrounding of oxygen atoms around Mn and Co, Fig.4.2, split the Co and Mn 3d states into

three fold degenerate t2g and two fold-degenerate eg level.

The high spin configuration of Co2+ is thus given by (t3
2g(↑), t2

2g(↓), e2
g(↑)) and Mn4+ is

given by (t3
2g(↑)). This leads us to the conclusion of metallic state for the compound LCMO

which does not agree with the experimental observation of insulating solution. Although, for
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Figure 4.1 (a) Spin arrangement of seven valence electrons at Co site using Hund’s
rule. The dotted down spin (↓) inside the green circled region is representing the
partially filled situation. (b) The spin arrangement of three valence electrons at Mn
site using Hund’s rule.

Atoms Wykoff positions x y z

La 2c 0.25019 0.25019 0.25019

Co 1a 0.0 0.0 0.0

Mn 1b 0.5 0.5 0.5

O 6f 0.80604 0.68227 0.25783

Table 4.1 Relaxed atomic coordinates of LCMO obtained keeping the lattice con-
stants fixed at experimental values.

a similar compound La2NiMnO6 [8] the insulating phase is obvious because of the spin con-

figuration for Ni2+ is 3d8 (t3
2g(↑), t3

2g(↓), e2
g(↑)) and for Mn4+ is 3d3 (t3

2g(↑)). This situation

generates curiosity to find the origin of insulating phase.

There is, also, report of magnetocapacitive behavior in the ordered phase of LCMO [9, 10,

11]. Therefore, we have carried out first-principles DFT study of the electronic structure and

phonon modes to shed light on the curious insulating behavior of the compound as well as the

magnetocapacitive behavior.
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4.3 Crystal Structure

The rhombohedral unit cell of LCMO having lattice constant of 5.488 Åand 1 f.u. in the unit

cell is shown in Fig. 4.2. In view of the fact that the positions of light atoms such as O, may

not be well characterized within the experimental technique, we have carried out structural

optimization where the internal degrees of freedom associated with La and O atoms have been

optimized keeping the lattice parameters fixed at experimentally determined values.[12] The

relaxed structural parameters of the rhombohedral phase (see Table 4.1) agree well within less

1% with experimental ones. In the optimized structure, the CoO6, and MnO6 octahedra are

regular having equal lengths of all Co−O and Mn−O bonds. The CoO6, and MnO6 octahe-

dra though exhibit trigonal distortion, with O−Co−O angles and O−Mn−O angles differing

from 90◦. For CoO6 octahedra, they differ by 1.31◦ while for MnO6 octahedra, they differ by

1.34◦. The Co−O−Mn angle is 160.02◦, deviating significantly from 180◦ linear Co−O−Mn

situation.

Figure 4.2 (a) The Rhombohedral unit cell of the compound La2CoMnO6 is shown
by dark solid line. (b) The octahedra of CoO6 and MnO6 with trigonal distortion.
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4.4 Electronic structure

The spin-polarized density of states (DOS) calculated within GGA approximation in LAPW

basis is shown in the left panel of Fig. 4.3. As we see, the electronic structure calculated

within GGA approximation gives rise to a half-metallic solution, with a gap in the majority

spin channel and finite density of states at the Fermi energy, EF . In the minority spin channel,

the transition metal d-oxygen p hybridized DOS extends from an energy range about -7 eV

below EF to about 4 eV above EF . While the low lying states occupying an energy range

from about -7 eV to about -4 eV or -3 eV are of predominant oxygen character, the states

close to EF are of predominant transition metal d character. The octahedral crystal field split

Mn-t2g states are occupied in the majority spin channel, Mn-eg states being empty while both

Mn-t2g and Mn-eg states are empty in the minority spin channel. Both Co-t2g and Co-eg states

are occupied in the majority spin channel while partially filled Co-t2g states cross EF in the

minority spin channel, minority Co-eg states being empty. This result is in agreement with

nominal valences of Co2+ and Mn4+ as reported in Refs. [4, 6, 12]. In accordance with the

half metallic nature of the solution, the total magnetic moment turned out to be of integer value

of 6.0 µB/f.u. with 0.01 µB at La site, 2.42 µB at Co site, 2.74 µB at Mn site, 0.09 µB at O site,

and rest residing in the interstitial.

Fig. 4.4 shows the d-energy level positions at Co and Mn sites, measured with respect to EF

in non-spin-polarized situation. The octahedral crystal field splits the five-fold degenerate d

levels into broad grouping of low-lying t2g’s and high-lying eg(eσ
g )’s. The presence of ad-

ditional trigonal distortion in the CoO6 and MnO6 octahedra further splits the t2g states into

singly degenerate a1g and doubly degenerate eπ
g ’s, with eπ

g ’s being higher in energy compared

to a1g. The half metallic solution obtained within the spin-polarized GGA calculation is there-

fore obvious. The states in the majority spin channel are either fully empty or occupied. In

the minority spin channel out of 2e−’s at the Co site, one occupies lowest lying a1g state and
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Figure 4.3 GGA density of states with dominant contribution of various orbital de-
grees of freedom are marked into the figure.

the remaining e− can occupy either of the any doubly degenerate eπ
g states giving rise to a par-

tially filled situation. While the broad t2g− eg splittings turn out to be about 2 eV, the t2g− eπ
g

splittings are much smaller, ≈ 0.04−0.05 eV.

Application of missing correlation effect in the form of GGA+U calculation though increases

the splitting between occupied Co-eg and unoccupied Mn-eg states in the majority spin chan-

nel, and that between occupied Co-t2g and empty Mn-t2g, Co-eg in the minority spin channel,

it cannot lift the degeneracy between degenerate Co-eπ
g states in the minority spin channel,

leaving them partially filled with one electron. The left most upper panel of Fig. 4.5 shows

the band structure of LCMO calculated within GGA+U (Ref. [13]) for a typical choice of U

= 4 eV and JH = 1 eV applied at Co and Mn sites. Only the minority channel is shown, since

the majority channel is already gaped with either completely occupied or empty states. The

corresponding DOS for both the spin channels is shown in the left most lower panel.

In order to explore the effect of spin-orbit coupling which is operative in t2g manifold, we
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Figure 4.4 Energy level diagram for Co-d (left panel) and Mn-d (right panel) as
obtained from NMTO-downfolding method. At Co-eπ

g level we see partially filled
situation in the down spin channel.

carried out GGA+SO calculations for LCMO with the magnetization axis chosen along [001]

direction. The orbital moment at Co and Mn site turned out to be 0.14 µB and -0.01 µB, re-

spectively. Co2+ being more than half filled, the orbital moment is pointed along the direction

of the spin moment, while Mn4+ being less than half filled, the orbital moment is pointed

opposite to the direction of spin moment as listed in Table 4.2. The orbital moment at Mn

site is tiny due to the t3
2g configuration with no orbital degrees of freedom left. The orbital

moment at the Co site, on the other hand, is large due to the orbitally degenerate eπ
g states and

introduction of SO coupling lifts the degeneracy of eπ
g as shown in upper middle panel of Fig.

4.5. This lifting of degeneracy gives rise to a pseudogap at EF in the density of states in the

minority spin channel, failing a bit short of opening the gap, as shown in the lower middle

panel. The situation changes significantly upon application of GGA+U+SO, as is shown in

the last panels of Fig. 4.5. For choices of U=4.0 eV and JH = 1.0 eV, the orbital moment at

Co site was renormalized to a value of 0.17 µB. The Mn orbital moment also showed a small

renormalization to a value of -0.02 µB. This makes Co-eπ,1
g state completely occupied and

Co-eπ,2
g state completely empty in the minority spin channel, opening up a gap of about 1.7
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eV.[14] This clearly exhibits that LCMO is an insulator driven by Coulomb-assisted spin-orbit

coupling, as has also been recently found for spinel compound [15] Fe2CrS4, and another

double perovskite compound [16] Ba2NaOsO6.

Figure 4.5 (a) The band structure calculated under GGA+U approximation in the
minority spin channel. (b) The band structure is calculated under GGA+SO approx-
imation, in the minority spin channel, with a pseudo gap at the Fermi level due to
spin-orbit coupling. (c) The band structure calculated under GGA+U+SO approxi-
mation with a large gap at the Fermi level. The energy axis is labeled with respect to
Fermi energy so that Fermi level has zero energy label on the energy axis.

Within the spin-polarized calculations, the ferromagnetic spin alignment between Co and Mn,

was found to be energetically stabler compared to antiferromagnetic spin alignment by about

0.3 eV, in conformity with the observed ferromagnetism in this compound.[4] The antiparallel

alignment leads to a total spin of zero, with perfect cancellation of Co and Mn spins. Low-

energy Hamiltonian is defined starting from the full DFT band structure by keeping active

only the Co-d and Mn-d states and integrating out all the rest, by employing the NMTO-

downfolding procedure. The process leads to the renormalization of Co-d and Mn-d wave

functions by integrating out the O and La orbital degrees of freedom thereby defining the su-

perexchange paths connecting the Co and Mn ions. Employing the extended Kugel-Khomskii-
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Table 4.2 The table is showing spin moments and orbital moments calculated under
various approximations.

Co Mn

spin orbital spin orbital

moment (µB) moment (µB) moment (µB) moment (µB)

GGA 2.42 · · · 2.74 · · ·

GGA+U 2.57 · · · 2.83 · · ·

GGA+SO 2.41 0.14 2.76 -0.012

GGA+U+SO 2.56 0.17 2.88 -0.018

like model, as done for [8] La2NiMnO6, the nearest neighbor magnetic exchange interaction

between Co and Mn turned out to be of ferromagnetic nature and a value of 4 meV, for a

choice of U = 4.0 eV and JH = 1.0 eV.

4.5 Phonon calculation

LCMO compound has been reported to exhibit magnetodielectric effect.[9] In order to in-

vestigate this issue, we studied the response of optimized rhombohedral structure to changes

in magnetic ordering, e.g., changes in phonon frequencies with changes in magnetic ordering.

For this purpose, we calculated the Γ-point phonons for the rhombohedral structure for the fer-

romagnetic alignment of Co and Mn spins vis-a-vis the antiparallel alignment of Co and Mn

spins. Since the considered rhombohedral structure is the high temperature structure while the

ground state structure is of monoclinic symmetry,[12] our T = 0 K calculations carried out on

rhombohedral symmetry show presence of unstable modes. We find that frequencies of the
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lowest energy infrared (IR)-active phonons soften from 79.1, 137.3, and 201 cm−1 in the FM

phase to 31.2, 96.9, and 166.3 cm−1, respectively (indicated by arrows in Fig. 4.6), exhibit-

ing a strong coupling with spin. The examination of atomic displacements corresponding to

the lowest frequency mode, as shown in the inset of Fig. 4.6, shows that the angle between

the Mn−O (at the center of the oxygen-octahedra) and O-Co (rightmost corner of the cell)

is affected by this phonon, reflecting the signature of exchange-striction driven spin-phonon

coupling. Our observed softening of IR-active phonon modes may be compared with the case

of La2NiMnO6, where softest phonon was found [8] to soften from 91.3 cm−1 in FM phase

to 65.5 cm−1 for the antiparallel alignment. One would therefore expect a similar nature of

magnetodielectric effect in LCMO as observed in case of La2NiMnO6. We note that neither

of these two double perovskites are ferroelectrics. If they can be made ferroelectric by doping

[17] or straining then one would expect a new class of multiferroic material with large mag-

netoelectric effect.

4.6 Conclusion

In conclusion, using first-principles DFT calculations, we have explored the electronic struc-

ture of FM double perovskite compound, LCMO, which to the best of our knowledge has

not been taken up earlier. Our study shows that unlike the sister compound, La2NiMnO6,

the insulating behavior in this compound, is driven by spin-orbit coupling within the Co-eπ
g

states of the octahedral and trigonal crystal field split Co-d manifold which gets assisted by

the presence of Coulomb correlation. We also explored the existence of possible spin-phonon

coupling in this material. Our study showed the presence of soft IR-active phonon modes

that respond strongly in terms of further softening upon changing the magnetic ordering. This
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Figure 4.6 Phonon density of states as a function of frequencies calculated at Γ point
in the Brillouin zone. The upper panel of the figure shows the IR-active phonons for
parallel alignment of Co and Mn spins. The lower panel of the figure shows phonon
density of states corresponding to anti-parallel alignment of Co and Mn spins. On the
right panel of the figure the atomic displacements corresponding to the lowest energy
IR-active phonon mode is shown.

would lead to large magnetodielectric effect, as observed experimentally.
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Chapter 5

Study of A-cation Effect in Transition

Metal Oxides:

Sr2CrSbO6 and Ca2CrSbO6

5.1 Background

As discussed already, 3d transition metal oxides (TMO’s) are fascinating group of materi-

als with intriguing electrical and magnetic properties. Spins associated with the magnetic

transition metal ions interact with the neighboring magnetic ion spins either directly or indi-

rectly. This gives rise to the various kinds of magnetic interactions that generate magnetism in

TMO’s. The alkaline earth or rare-earth cation in the structure (A-cation in perovskites ABO3

or double perovskites A2BB′O6 ) are believed to serve as charge reservoir with any direct in-

fluence on magnetism. In this chapter we study two double perovskite compounds Sr2CrSbO6

and Ca2CrSbO6 that present quite different perspective compared to above.

This chapter is based on Phys. Rev. B 86, 024440 (2012)
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5.2 Introduction

Recently, the role of rare-earth or alkaline-earth ions, the A-cation in the TMO’s in perovskites

or perovskite derived double perovskite structure, has been realized and appreciated as beyond

the role of spectator [1]. To mention a few examples, SrRuO3 is the only ferromagnetic 4d

transition metal oxide, while replacing Sr by Ca, CaRuO3 does not show long-range ferromag-

netic order [2]. The observation of varied magnetic ground states upon changing the A-site

cation, clearly challenges the idea of nonmagnetic A-cation playing no role in the magnetism

of B-cations. Double perovskite compounds Sr2CrSbO6 and Ca2CrSbO6 provide another ex-

ample of A-cation playing role in the magnetic interaction. Sr2CrSbO6 compound is reported

[3] to order with an antiferromagnetic alignment of Cr spins at a Nee’l temperature of 12 K,

while Ca2CrSbO6 compound is reported [4] to exhibit ferromagnetic long-rage ordering of Cr

spins below Tc of 16 K. The ordering temperatures of both Sr2CrSbO6 and Ca2CrSbO6 are

rather low, as due to large Cr-Cr distance separated by nonmagnetic ions Cr-Cr interactions

are expected to be low. What is interesting, though, is the switching from antiferromagnetism

to ferromagnetism upon substitution of Sr by Ca. It is interesting to find out the microscopic

origin of this difference in magnetic behavior. Given the fact that the ordering temperatures

are rather low, it is also a challenge for the ab initio theory to capture the effects accurately.

Using first-principles density functional theory based calculations, we show that it is not only

capable of capturing the ferromagnetic (FM) and antiferromagnetic (AFM) ordering tenden-

cies in Sr2CrSbO6 and Ca2CrSbO6, respectively, it also provides a microscopic understanding

of the contrasting behavior in the two compounds.
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5.3 Crystal Structure

Both Sr2CrSbO6 (SCSO) and Ca2CrSbO6 (CCSO) compounds belonging to the class of dou-

ble perovskite compounds form in monoclinic structure with P21/n space group[3, 5]. The

stabilization of monoclinic space group over the orthorhombic one, signals the ordering of

CrO6 and SbO6 octahedra in a rocksalt fashion [6], as shown in Fig. 5.1. The degree of Cr-Sb

ordering has been reported to 97% for the Sr compound and 92% for the Ca compound [3].

The comparison of crystal structure data between SCSO and CCSO shows CCSO structure to

be more distorted compared to that of SCSO which is driven by smaller ionic radius of Ca2+

compared to that of Sr2+ (see Table 5.1). The deviation of average Cr-O-Sb angle from 180◦

is 16.7◦ more for Ca compared to that of Sr compound. The average Cr-O bond length shows

a small expansion of about 0.5% in Ca compared to that in Sr compound. CrO6 octahedra is

distorted for both SCSO and CCSO in the sense that all three pairs of Cr-O bond lengths are

different and all O-Cr-O angles deviate from 90◦.

5.4 Results

5.4.1 Basic Electronic Structure

Figure 5.2 shows the non-spin-polarized density of states (DOS) of SCSO and CCSO calcu-

lated within GGA in LAPW basis. The states crossing the Fermi level, EF is of dominant Cr

character, as shown in top panel of Fig. 5.2. The octahedral crystal field surrounding Cr ions

splits the Cr-d states into two board groups of Cr-t2g and Cr-eg, which show small splitting

within themselves arising due to distortion in CrO6 octahedra. This distortion also leads to

finite mixing between t2g and eg degrees of freedom as seen in DOS plot in Fig. 5.2. The
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Figure 5.1 Top panels: Crystal structure of Sr2CrSbO6 (SCSO) and Ca2CrSbO6
(CCSO) projected onto a-b plane. The CrO6 and SbO6 octahedra are colored as
violet (dark gray) and yellow (light gray), respectively. The Sr/Ca atoms sit in the
hollow formed by corner shared CrO6 and SbO6 octahedra. The O atoms occupying
the corners of the octahedra are shown as small balls, belonging to three different
classes, O1, O2, and O3. Bottom panels: The O-Cr-O and O-Sb-O bond angles in
two compounds.

relatively narrow Cr-t2g states occupy the range of ≈ 0.5 eV below EF to ≈ 0.2 eV above EF ,

while Cr-eg states remain empty, occupying an energy window of about 2−2.5 eV, positioned

around 2 eV above EF . The Cr-eg band width is relatively wider for SCSO compared to that

of CCSO, which almost closes the gap between Cr-t2g and Cr-eg manifold. The O-p states

occupy mostly the energy range below -3 eV or so, though they show finite mixing with Cr-d

states, as shown in the middle panel of Fig. 5.2. The last panel in Fig. 5.2 shows the DOS

projected onto Sr/Ca states as well as onto Sb states. Both of these (A as well as B’ ) degrees

of freedom show finite mixing with Cr-d states, the contribution of Sr states in Cr-d manifold

being somewhat larger than that of Ca states.
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Table 5.1 Structural comparison between SCSO and CCSO compounds.

P21/n SCSO CCSO

a=5.576 b=5.554 c=7.847 a=5.408 b=5.494 c=7.690

β=89.98 β=90.101

wyckoff x y z x y z

Sr/Ca 4e 1.000 0.004 0.252 0.990 0.043 0.251

Cr 2d 0.5 0.0 0.0 0.5 0.0 0.0

Sb 2b 0.5 0.0 0.5 0.5 0.0 0.5

O1 4e 0.040 0.510 0.248 0.082 0.477 0.250

O2 4e 0.751 0.250 0.014 0.703 0.297 0.041

O3 4e 0.239 0.236 0.976 0.208 0.211 0.954

6 Sb-O1-Cr 166.63◦ 153.00◦

6 Sb-O2-Cr 173.42◦ 151.87◦

6 Sb-O3-Cr 167.63◦ 152.59◦

<Cr-O> 1.978 1.988

<Sb-O> 1.972 1.977

< 6 Cr-O-Sb> 169.23 ◦ 152.49 ◦
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Figure 5.2 Top panels: GGA DOS for SCSO (left) and CCSO (right) projected onto
Cr-d states. The t2g and eg contributions are shown in solid and dashed lines, respec-
tively. Middle panels: O-p DOS for SCSO (left) and CCSO (right). Bottom panels:
GGA DOS for SCSO (left) and CCSO (right) projected onto Sr/Ca states (solid lines)
and Sb states (shaded area). The zero of the energy is set at GGA Fermi energy, EF .

5.4.2 Superexchange Interaction

In order to understand the superexchange-driven magnetism in these two compounds, in the

next step we define a low energy Hamiltonian starting from the full DFT band structure by

keeping active only the Cr-d states and integrating out all the rest, by employing the NMTO-

downfolding procedure [7]. The process leads to the renormalization of Cr-d wave functions

by integrating out the O-p, Sr/Ca and Sb degrees of freedom thereby defining the superex-

change paths connecting the two Cr ions. Figure 5.3 shows the low-energy band structure in

comparison to the full band structure, calculated in NMTO basis, for SCSO and CCSO. The

nearly perfect agreement between the two, validates the goodness of the procedure. The wave
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functions defining the basis for the low-energy, downfolded band-structure are the effective

Cr-d wave functions, which serve as the Wannier-like functions for the underlying low-energy

band structure. The Fourier transformation of the low-energy Cr-d Hamiltonian, H(k)→H(R),

provides the effective hopping integrals connecting the neighboring Cr-d levels and the crystal

field splitting between various d levels at the Cr site. The Cr ion in its nominal valence of 3+,

gives rise to half-filled t2g levels and empty eg levels, as shown in Fig. 5.4, for SCSO.

Figure 5.3 The NMTO-downfolded Cr-d only band structure (shown in red, solid
lines) in comparison to full GGA band structure (shown in black, dashed lines) for
SCSO (left panel) and CCSO (right panel). E0-E3 denote the energy points about
which energy expansions have been carried out in NMTO calculation.

Two different hopping processes are involved in the superexchange. The first process involves

hopping from half-filled t2g levels at one Cr site to half-filled t2g levels at neighboring Cr site.

This superexchange process is of AFM nature [8, 9, 10] and of magnitude ∑
i j

2t2
i j

(U +∆i j)
, where

ti j is the hopping interaction connecting ith t2g level at Cr site 1 to jth t2g level at Cr site 2, ∆i j

is the difference in energy level position of ith and jth level and U is the Hubbard U , the energy

cost in putting two electrons at the same site. The second process involves hopping from half-
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Figure 5.4 The superexchange processes and the corresponding energy costs for vir-
tual hopping between half-filled Cr-t2g states and half-filled Cr-t2g states (top panels),
and that between half-filled Cr-t2g states and empty eg states (bottom panels). The
values of crystal field splittings are shown for specific case of SCSO.

filled t2g states at Cr site 1 to empty states at Cr site 2. This superexchange process is of FM

nature, favored by Hund’s coupling JH and given by [9, 10], −∑
i j

2t2
i jJH

(U +∆i j)(U +∆i j− JH)
,

where ti j is the hopping connecting ith t2g state and the jth eg state, ∆i j being the corresponding

energy level splitting. The net magnetic exchange is given by the sum of the two processes

and the balance between the AFM and FM component depends on the precise values of ti j and

∆i j . For the determination of ti j and ∆i j we use the real-space description of the low-energy,

Cr-t2g-only Hamiltonian as given by NMTO-downfolding calculation. Figure 5.5 summarizes

the results for the first-nearest-neighbor (1NN) Cr-Cr interaction, J(1), for a variation of U

values at Cr site. The Hund’s coupling JH is assumed to be fixed at 0.9 eV. We find that in

general the AFM component of magnetic exchange, J(1)AFM is larger for the Sr compound to that

for the Ca compound while the reverse is true for the FM component of magnetic exchange
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Figure 5.5 The total (left, top panel), ferromagnetic (right, top panel) and antifer-
romagnetic (bottom panel) components of the first-nearest-neighbor Cr-Cr magnetic
exchange, plotted as a function of U for SCSO (circles) and CCSO (squares).

J(1)FM. The resulting net magnetic component of magnetic exchange: J(1)Total = J(1)AFM + J(1)FM, is

of positive sign for SCSO and therefore of AFM nature while it is of negative sign for CCSO

and therefore of FM nature. As expected with increase of U value, the magnitude of J(1) de-

creases. We repeated this exercise for the second nearest neighbors Cr-Cr interaction, J(2), as

well. Figure 5.6 shows the comparison of J(1) to that of J(2) for SCSO and CCSO. The 1NN

and 2NN superexchange paths are shown in the inset. While in literature, attention has been

focused [3] on 2NN interaction given by the superexchange path Cr-O-Sb-O-Cr, we find it

is the 1NN interaction, which involves the hopping through Sr/Ca site, dominates and is the

relevant one to be considered. We further note the 2NN interactions which are significantly

smaller in magnitude compared to 1NN interactions, are of same sign for both SCSO and

CCSO. Therefore, the switching from net AFM to FM behavior of SCSO to CCSO is gov-

erned by the 1NN superexchange path through Sr or Ca ion.
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Figure 5.6 The second-nearest-neighbor Cr-Cr magnetic exchange in comparison to
first-nearest-neighbor Cr-Cr magnetic exchange plotted as a function of U. The first-
and second nearest-neighbor interactions are shown as circles (squares) and triangles
(stars) for SCSO (CCSO), respectively. The top inset show the superexchange paths
for the first-nearest-neighbor interaction, J(1) and second-nearest-neighbor interac-
tion, J(2), considering the case of SCSO. The bottom inset shows the zoomed plot
showing the second-nearest-neighbor interaction, J(2).

5.4.3 Wannier Function

To understand the dominance of 1NN superexchange path over the 2NN, we show in the top

panel of Fig. 5.7 the plot of effective Cr t2g (dxy ) Wannier function placed at two Cr sites

of SCSO, one at 1NN positions and another at 2NN positions. While the central part of the

functions are shaped according to t2g symmetry, the tails are shaped according to integrated

out O-p symmetry. We find that O-p-like tails are deformed in the sense O-px/py tails are bend

towards Sr atom, which highlights the importance of hybridization effect from Sr. This in
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turn facilitates the 1NN Cr-Cr interaction significantly, forming an overlapping path between

Wannier functions at two Cr sites. The 2NN Cr-Cr interaction on the other hand, does not

benefit from this bending of tails; the two Wannier functions remain more or less decoupled,

though tiny overlap is noticed at 2NN O sites. Having understood that the 1NN interaction

being stronger than 2NN, we show in the bottom panel of Fig. 5.7 a plot of Cr-t2g Wannier

functions at 1NN and 2NN positions of CCSO. Comparing with the case of SCSO, we notice

two differences. First, the bending of O px/py tails is somewhat less pronounced for CCSO

compared to that of SCSO. Second, due to larger distortion in the structure in case of CCSO

the tails are misaligned, weakening the AFM superexchange path. The increased distortion

in the structure in case of CCSO compared SCSO, on the other hand, causes greater t2g-

eg mixing and therefore, relatively stronger t2g to eg hopping than that of SCSO, making

J(1) FM stronger for CCSO. The combined effect of weakening of the AFM superexchange

and strengthening of the FM superexchange, leads to a net FM Cr-Cr interaction for the Ca

compound, as opposed to an AFM Cr-Cr interaction in the Sr compound. We note that such

effects are rather subtle and the result depends on the reliable estimate of t and ∆, which the

NMTO-downfolding method is clearly capable of providing. Finally, in order to appreciate the

effect of the structural distortion on the sign and values of J(1), we repeated the calculation of

J(1) for CCSO assuming the same crystal structure as that of SCSO. The resulting J(1) is found

to be of AFM type, slightly smaller in magnitude compared to that of SCSO. This happens

as the AFM component is increased compared to that of real CCSO, due to the prevention of

misalignment of tails, and the FM component is reduced compared to that of real CCSO, due

to reduced t2g-eg mixing. This in turn, emphasizes the role of lattice distortion.
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Figure 5.7 Effective orbitals corresponding to the downfolded Cr dxy NMTOs, placed
at two Cr sites situated at first nearest- neighbor (left panels) and second-nearest-
neighbor (right panels) positions for SCSO (top panels) and CCSO (bottom panels).
Lobes of the orbitals placed at different Cr sites are colored differently.

5.5 Antiferromagnetic Ordering in Sr2CrSbO6

The FCC lattice of Cr spins in SCSO, consisting of edge-shared Cr4 tetrahedra with AFM

1NN coupling is known to be geometrically frustrated Fig. 5.8, as in the case of Ba2LnSbO6

or Sr2LnSbO6 (Ln = Dy, Ho, Gd), in which case no magnetic ordering is observed down

to a temperature scale of 2 K or so [11]. While frustrated triangular, kagome, pyrochlore,

and square-lattice systems have been extensively studied,[12] there have been relatively few

studies of frustrated FCC lattice. The few studies carried out on frustrated FCC lattice in
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the context of double perovskite compounds [13, 14, 15] indicate that weak 2NN coupling or

small anisotropy can, however, give rise to stabilization of the AFM order. The experimentally

observed AFM structure of SCSO [3] is an A-type AFM structure (cf. Fig. 5.9) with ferro-

magnetic layers of Cr moments in the ab plane, coupled antiferromagnetically along the c-

axis. This leads to a high degree of frustration with each Cr spin surrounded by four in-plane

Cr spins ferromagnetically coupled and eight out-of-plane Cr spins antiferromagnetically cou-

pled. The spin wave theory of frustrated AFM on FCC lattice predicts [13, 15] that FM 2NN

coupling stabilizes the AFM-A structure, while AFM 2NN coupling leads to stabilization of

the AFM-G structure with all neighboring Cr spins being antiferromagnetically coupled. Since

the observed AFM structure for SCSO is of AFM-A type, the tiny but AFM nature of 2NN

coupling cannot explain this. The alternative explanation could be the stabilization through

anisotropy. In order to probe this, we carried out GGA+U+SOC calculations in LAPW basis,

Figure 5.8 Frustrated Cr sublattice in SCSO. Edge-shared Cr4 tetrahedra gives rise
to magnetic frustration due to competitive AFM interaction. Blue balls represent Cr
atoms.

considering the spin quantization axis pointed along the [001] direction as well as the [110]

direction with choice of U = 5 eV and JH = 0.9 eV. The [110] direction is found to be favored
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energetically compared to that of the [001] direction by about 1.8 meV/f.u. The preference

of the [110] magnetization direction is in conformity with the experimental observations [3].

The orbital moment at Cr site is expected to be vanishingly small due to t3
2g configuration, but

finite covalency with oxygen [16] gives rise to an orbital moment of -0.05 µB. For the magne-

tocrystalline anisotropy of positive sign with E110 being favorable compared to E001 leads to

stabilization of AFM-A structure, as discussed in Ref. [14].

Figure 5.9 A-type AFM configuration with canted spin of Cr ions. The Cr spins
are parallel in ab plane and antiparallel along c-axis. Red dotted lines connecting Cr
ions represent the Cr4 tetrahedra. Canted Cr spins within the Cr4 tetrahedra removes
magnetic frustration in the Cr sublattice. (reproduced from [3])
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5.6 Total Energy Calculations

The above analysis though provides immense microscopic insight is based on the second order

perturbative treatment. Therefore, in order to check the accuracy of the above analysis, we

carried out total energy calculations within the GGA+U+SOC scheme in LAPW basis for

SCSO and CCSO compounds, considering two different spin alignments, the FM and A-type

AFM as observed for SCSO [3]. From our experience on the U dependence of J values as

given by the superexchange formula, described above, we choose U = 5 eV and JH = 0.9 eV.

With this choice, E(AFM) - E(FM) turned out to be -2.72 meV for SCSO and +1.63 meV for

CCSO. Mapping the total energy differences to spin model, the J values turn to be -0.08 meV

for SCSO and 0.05 meV for CCSO. This leads to mean-field estimates of TN = 14 K for SCSO

and TC = 8 K for CCSO, in rather good agreement with the experimental estimates.

5.7 Conclusion

To conclude, we have carried out first-principles calculations in order to gain microscopic

understanding of the switching from AFM to FM long-range order in double perovskite com-

pound SCSO, in replacing Sr by Ca. Our study reveals that the first-neighbor magnetic inter-

action mediated by the superexchange path involving Sr/Ca dominates over the the second-

neighbor magnetic interaction. While in the literature, importance has been placed on second-

neighbor magnetic interaction,[4] our study shows that it is the first nearest-neighbor inter-

action that dictates the physical behavior. Plugging in the NMTO-downfolding-derived esti-

mates of effective Cr-Cr hopping and the crystal field splitting in the superexchange formula

could successfully reproduce the ferromagnetic and antiferromagnetic nature of magnetic in-

teractions in Ca2CrSbO6 and Sr2CrSbO6 compounds respectively. The differences in the hy-

bridization effect between Sr and Cr to that of Ca and Cr, together with differences in the
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distortion of the crystal structure driven by size difference of Sr2+ and Ca2+ ions, drive this

interesting switching of magnetic properties at Cr sublattice. Finally, the magnetocrystalline

anisotropy at Cr site drives the A-type AFM ordering in case of SCSO. Similar behavior has

been reported for A2MnRuO6 (A=Sr,Ca). While Sr2MnRuO6 is observed to be an AFM insu-

lator, Ca2MnRuO6 is found to be a metallic ferromagnet [17]. It will be worthwhile to explore

these compounds in a further study.
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Chapter 6

Electronic Structure Study of Hg2Ru2O7

in Comparison to Tl2Ru2O7

6.1 Background

The 4d transition metal oxides, characterized by extended nature of the 4d orbitals, exhibit

comparable energy scales of kinetic and coulomb energies which are competitive in nature.

This drives the system at the verge of localized to itinerant behavior with a possibility of

crossover from one to another depending on the details. In the present chapter we discuss

this interesting issue in the context of ruthenate pyrochlores. Pyrochlore oxides are of interest

because of their catalytic activity for a variety of processes and high temperature stability

[1]. Many of the pyrochlore compounds like zirconate pyrochlores are important because of

their potential use as high temperature gas sensors or fast ion conductors. Pyrochlore lattice

naturally gives rise to geometric frustration and well known for providing spin-ice problem [2].

In this chapter we will focus on two pyrochlore ruthenates namely Tl2Ru2O7 and Hg2Ru2O7.

This chapter is based on Phys. Rev. B 86, 125117 (2012)
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6.2 Introduction

Ruthenates in pyrochlore structure [Ref. [3]] of general formula A2B2O6O’, e.g., Tl2Ru2O7,

Bi2Ru2O7, or Y2Ru2O7 [Ref. [4, 5, 6]] have been synthesized in which Ru ions are in Ru4+

oxidation state. There are other ruthenate pyrochlores like Cd2Ru2O7, Ca2Ru2O7 [Ref. [7, 8]]

and recently synthesized Hg2Ru2O7 [Ref. [9]], in which Ru ions are in the less common [Ref.

[10]] highly oxidized state of Ru5+. Among these compounds, Tl2Ru2O7 (TRO) is reported

[Ref. [11]] to exhibit a metal-insulator transition (MIT) at 120 K. The low temperature insu-

lating phase of TRO has been interpreted [Ref. [12]] as an orbital ordering driven formation of

one dimensional Haldane chain opening a spin gap suggesting the importance of correlation

effect. The recently synthesized Hg2Ru2O7 (HRO) has been also reported [13, 14] to exhibit

a first order MIT at 107 K, similar to TRO. The apparent similarity in behavior of TRO and

HRO is puzzling. While Ru4+ in TRO in low spin d4 occupation of octahedral crystal field

d states has orbital degrees of freedom left justifying the formation of orbital order driven

formation of Haldane chain,[12] Ru5+ in HRO in low spin d3 occupation has three t2g elec-

trons and should give rise to an S = 3/2 spin moment without any orbital degrees of freedom

in the ionic limit. Local density approximation coupled with dynamical mean field theory

(LDA+DMFT) calculation [15], carried out assuming a two channel model of HRO and ignor-

ing the hybridization effect between Ru-O and Hg-O’, showed signature of non-Fermi liquid

behavior. The recent nuclear magnetic resonance (NMR) experiment [16] on HRO, on the

other hand, reports observation of Ru-NMR signals at zero field at low temperature, providing

evidence for an antiferromagnetic (AFM) order in the insulating phase, instead of the initial

suggestion of formation of spin singlet states [14]. The NMR data adds onto further puzzle in

the sense that the ordered moments are estimated to be about 1µB per Ru, significantly smaller

compared to the expected value of 3µB for Ru5+ (S = 3/2). This leads to the question whether

the observed behavior in HRO is driven by the same cause as in TRO, which relies on the
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strongly correlated picture [13], and therefore assumes the localized character of Ru-d elec-

trons. The situation is rather curious since it is the same Ru electrons in a similar structural

environment that play the central role in both compounds. We investigate this issue employing

first principles calculations.

6.3 Crystal Structure

In our study, we focused primarily on the high temperature phase. We shall be discussing

some of the preliminary results on the low temperature phase at the end of the chapter. The

high temperature phase of both TRO and HRO form in a cubic pyrochlore structure with

space group Fd3m [9, 12]. The slightly larger ionic radius of Hg2+ compared to Tl3+ makes

Figure 6.1 Primitive unit cell of cubic HRO (TRO). The Hg-O’ (Tl-O’) chain passes
through the cage formed out of the connection of corner shared RuO6 octahedra.

the lattice constant of HRO a bit larger (10.20 Å) compared to that of TRO (10.18 Å). The

free parameter associated with x coordinate of O atoms is 0.317 (0.326) for HRO (TRO). The

RuO6 octahedra show trigonal distortion resulting in O-Ru-O deviating from 90◦ by δ . The
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value of δ is 1.8◦ (5.2◦) for HRO (TRO). The RuO6 octahedra corner share with each other to

give rise to a cage like structure through which the Tl/Hg-O’ chain passes (cf. Fig. 6.1).

Figure 6.2 Spin-polarized GGA DOS for HRO (left) and TRO (right). The dominant
contributions of various degrees of freedoms have been marked. The zero of the
energy is set at EF .

6.4 Basic Electronic Structure

To understand the comparison of basic electronic structure, the spin splitting, and the hy-

bridization of different orbital degrees of freedom we carried out spin-polarized DFT calcula-

tions within GGA. The spin-polarized GGA density of states (DOS) is shown in Fig. 6.2. The

Ru d-O/O’ p hybridized band structure extends from an energy range 8 eV below Fermi energy

(EF ) to about 6 eV above EF . The states close to EF are of predominant Ru-d character, while

the states below -2 eV or so are dominantly of O and O’-p character. In accordance with low

spin configuration of Ru, the octahedral crystal field split Ru-t2g states form the low energy

sates spanning the energy window from about -1 eV to 1 eV, Ru-eg (eσ
g ) states being empty

and situated at an energy position about 4 eV above EF . Comparing the density of states

of HRO and TRO, we find that the spin splitting of Ru-t2g dominated states crossing EF is

much larger for TRO compared to that of HRO, although by simple counting of electrons, one
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Table 6.1 Spin magnetic moments (in µB) calculated under GGA and GGA+U cal-
culations, considering the FM as well as AFM (Ru: ↑, ↑, ↓, ↓) alignment of Ru spins

HRO TRO

FM GGA GGA+U GGA GGA+U

Total Moment/Ru 0.13 1.79 1.45 2.00

Ru 0.11 1.23 1.03 1.49

O 0.02 0.19 0.10 0.12

O′ 0.01 0.06 0.13 0.15

AFM GGA GGA+U GGA GGA+U

Total Moment/Ru 0.01 0.00 0.00 0.00

Ru 0.14 1.57 1.09 1.40

O 0.00 0.12 0.06 0.05

O′ 0.00 0.00 0.00 0.00

would have expected the opposite. This is also reflected in the computed magnetic moment

of 1.45 µB/Ru for TRO and a small moment of 0.13 µB/Ru for HRO. The moment at Ru site

is found to be 1.03 µB for TRO and 0.11 µB for HRO with the rest of the moments sitting at

the O site due to the covalency effect. Note that the rather small moment of Ru for HRO and

an appreciable one for TRO happens irrespective of the chosen alignment of neighboring Ru

spins. Considering the antiferromagnetic (AFM) arrangement with two of the Ru spins point-

ing up and two down, out of four Ru ions in the unit cell, one arrives at the same conclusion

(as shown in Table 6.1).

In order to check the influence of the missing correlation in GGA, calculations were carried

within GGA+U, with a choice of modest U values in conformity with the wide bandwidth of

Ru-O hybridized bands. Calculations have been carried out varying U value between 1 and
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3 eV and choices of both LMTO and plane wave basis. As discussed in Ref. [17], Udd is

expected to change by ∼1 eV per d electron change for the same element. The U value is

expected not to be very different between Ru4+ and Ru5+, since the charge occupancies for

these two formal valence states are found not to differ by full one electron. Considering the

DFT calculated Ru d occupancies of HRO (Ru5+ ) and TRO (Ru4+ ), we find the change in U

value is as small as 0.2 eV. Repeating the calculation taking into account this change produces

negligible effect. In order to keep the comparison between the two compounds direct, we kept

the U value the same between TRO and HRO for a given set of calculations. The basic conclu-

sions were found to remain unchanged irrespective of the choice of basis set and U values. The

GGA+U density of states is shown in Fig. 6.3 for a choice of U = 2 eV and JH = 0.8 eV. The

inclusion of U increases the spin-splitting for both TRO and HRO, giving rise to a magnetic

moment of 2.0µB /Ru for TRO and 1.79µB /Ru for HRO, with 1.49µB and 1.23µB of moments

at Ru sites, respectively. Note that although the sizes of magnetic moments at Ru sites, 1.49µB

(TRO) and 1.23µB (HRO), may sound comparable, they are ∼75% and ∼40% of the fully

polarized moments of 2µB and 3µB , respectively. Considering the calculated moments for

AFM also, we find 50%−60% reduction of magnetic moment at Ru site compared to the fully

localized ionic limit, for the Hg compound, in comparison to only 25%−30% reduction of

magnetic moment at Ru site compared to the fully localized ionic limit, for the Tl compound.

In order to understand the significantly reduced magnetic moment compared to the ionic value

in HRO as against TRO, we plot the Ru-t2g density of states for HRO and TRO in the bottom

panels of Fig. 6.3. The trigonal distortion present in RuO6 octahedra for both HRO and TRO,

in addition to octahedral crystal field splitting, further splits t2g states into a singly degenerate

a1g state and doubly degenerate eπ
g states. We, therefore, project the Ru-t2g density of states

onto a1g and eπ
g states. As is evident from the plots, eg projected bandwidth is systemati-
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Figure 6.3 Top panels: GGA+U DOS for HRO (left) and TRO (right). Bottom pan-
els: Ru-t2g DOS for HRO (left) and TRO (right) projected onto a1g (shaded area) and
eπ

g (dashed lines). The zero of the energy is set at EF .

cally larger than that of a1g projected states by 0.3−0.4 eV, which comes from the specific

shape of the wave function associated with eg compared to a1g that allows for the increased

hybridization with O-p for eg . The individual a1g and eπ
g bandwidths for HRO are larger than

that of TRO by 0.3−0.4 eV. To gain an understanding on this issue, we replot in Fig. 6.4 the

schematic a1g and eπ
g partial DOS for HRO and TRO as rectangular density of states, omitting

the detail structure of the DOS and the small tailing, which makes the comparison of HRO

and TRO more evident. Focusing on TRO, we find a1g bandwidth (Wa1g )∼ 1 eV and eπ
g band-

width (Weπ
g ) ∼ 1.4 eV. The spin splitting between the band centers is such that it makes a1g

band edges in majority and minority spin channels fall short of overlap, while the eπ
g majority

and minority bands overlap over an energy window of only ≈ 0.5 eV. Moving to HRO, the

increase of 0.3−0.4 eV bandwidth of a1g and eπ
g ’s makes both a1g and eπ

g bands in majority

and minority spin channel overlap, the overlap being substantial for eπ
g bands. Once the over-

lap between majority and minority spin channel bands happens, the electron flows from one
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Figure 6.4 Schematic DOS corresponding to a1g (shaded region) and eπ
g (unshaded

region) states for HRO (top panel) and TRO (bottom panel).

spin channel to other, making the effective spin splitting further reduced. The above analysis

is found to be true, considering Ru-t2g projected partial DOS for other spin arrangements as

well. We have also carried out GGA+U+spin-orbit (SO) calculations. The basic conclusion

concerning the difference of TRO and HRO electronic structure is found to remain the same.

The orbital moment at Ru site is found to be vanishingly small for HRO and that of TRO is

found to ≈ 0.07 µB. Nominal Tl3+ and Hg2+ valences lead to filled d-shell configurations

with tiny orbital moment at Tl/Hg site. The analysis of the non-spin-polarized partial DOS

shows a similar (0.3−0.4 eV) bandwidth expansion in HRO compared to TRO, indicating this

to be driven by the change in the nature of the hybridization.
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6.5 A-d Ru-d Hybridization

Since the lattice constant and Ru-O bond lengths and bond angles are rather similar between

HRO and TRO compounds, one may expect the chemical effect of Hg versus that of Tl to play

a role in the bandwidth expansion. In Fig. 6.5, we plot the Hg/Tl d- and s-projected DOS in

comparison to that of O-p. We find a large shift (≈5 eV) in energy level position of Hg-5d in

comparison to Tl-5d, which causes larger hybridization between Hg-5d and O-2p compared

to that between Tl-5d and O-2p, which in turn hybridizes stronger with Ru-t2g-O-p derived

states. This is demonstrated nicely in the so-called fat band plots shown in insets of Fig. 6.5,

where we projected out the Tl and Hg-d characters onto the manifold of Ru-t2g bands, the

fatness associated with each band being proportional to Tl or Hg-d characters. As is clearly

seen, the weight, shown as fatness associated with the bands, is far more significant for Hg-d

compared to Tl-d. While normally attention is focused onto empty s states of Hg or Tl [18],

the above analysis shows that it is the mixing with d characters of Hg or Tl that plays the

crucial role to decide the Ru-t2g bandwidth difference between HRO and TRO.

In order to quantify the above discussed hybridization effect, we define the hybridization in-

dex, Hdd . We use two alternative approaches to define Hdd . In the first approach [19, 20],

HI
dd is defined as ∑i wA

i,dwRu
i,d , where wA

i,d and wRu
i,d are the projections of ith Kohn-Sham or-

bital at Γ point onto d spherical harmonic centered at Hg/Tl and Ru atoms, respectively, in-

tegrated over a sphere of specific radius. The summation in i runs over the energy range of

the Ru-t2g manifold. In the second approach, a k integrated estimate was obtained by defining

HII
dd =

∫
ρA

d (ε)ρ
Ru
d (ε)dε , where ρA

d (ρRu
d ) is the projected d DOS on Hg/Tl (Ru) site and the

energy integration is carried out over the energy range of Ru-t2g manifold. Computations of

Hdd have been carried out for both non-spin-polarized as well as spin-polarized calculations

within GGA+U. The estimates for HRO and TRO were found as HI
dd|nonspin = 0.02 (TRO)

and 0.10 (HRO), HI
dd|GGA+U = 0.01 (TRO) and 0.30 (HRO), HII

dd|nonspin = 0.03 (TRO) and
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0.18 (HRO), and HII
dd|GGA+U = 0.03 (TRO) and 0.25 (HRO). Irrespective of the definition,

and spin-polarized or non-spin-polarized calculations, HRO shows A-d−Ru-d hybridization

which is about an order of magnitude larger compared to that of TRO. This change in the

extent of A-Ru hybridization causes the 0.3−0.4 eV increase in Ru-t2g bandwidth for HRO

compared to TRO, which is of the order of inherent spin splitting of Ru.

Figure 6.5 Non-spin-polarized DOS projected onto Hg/Tl-d (solid line), Hg/Tl-s
(shaded region), and O’-p (dashed line) for HRO (upper panel) and TRO (lower
panel). Insets: projection of Hg/Tl-d character (marked by fatness) in Ru-t2g bands.
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6.6 Wannier Function and Localizattion Properties

In order to probe the localization properties of electrons, attempts have been made based on

constraint total energy calculations in the context of f -electron systems, as in Ref. [21] and

in the context of d-electron systems, as in Ref. [22]. Since the Ru-d electrons are expected to

be on the borderline of localized and itinerant character, here we followed an alternative ap-

proach. We carried out NMTO-downfolding calculation to construct effective Ru-a1g and eπ
g

Wannier functions. In the NMTO-downfolding calculation, starting from a non-spin-polarized

self-consistent GGA calculation, all the degrees of freedom other than Ru-t2g’s have been in-

tegrated out to construct a Ru t2g only low-energy Hamiltonian. This leads to construction

of Wannier functions, which span only the Ru-t2g projected bands and nothing else. The

constructed Wannier functions have a central part that is shaped according to a1g or eπ
g sym-

metries, while the tails are shaped according to integrated out degrees of freedom, namely

O-p, O’-p, and Hg/Tl degrees of freedom as shown in Fig. 6.6, for eπ,2
g . We find that while

the constructed Wannier functions have a central part that is shaped according to eπ
g symmetry

and the predominant tails are of p character sitting at O sites, there are finite weights at O’ and

Hg/Tl sites of the Hg/Tl-O’ chains surrounding the RuO6 central octahedra. This indicates

finite mixing between A-O’ and Ru-O degrees of freedom, a fact which has been stressed also

in literature [23, 24] and has been neglected in the LDA+DMFT treatment of HRO [15]. We

further find the weight sitting at Hg or Tl site is of Hg/Tl d character mixed with s character

and the weight at Hg is much stronger compared to that at Tl (encircled region in the Wan-

nier function plots in Fig. 6.6). To underline the different extent of spatial extents of the two

wave functions, we also plot the difference between the two eπ,2
g Wannier functions of HRO

and TRO in the bottom panel. While the differences are seen for weights sitting at Ru and O

sites, the difference weight sitting at the A site is appreciable, which dictates the range of the

Wannier function.
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To put the above observations in quantitative footing, we calculated the spreads of the

Figure 6.6 Effective Ru-eπ,2
g Wannier functions for HRO (left panel), TRO (middle

panel), and their difference (rightmost panel) obtained from the NMTO-downfolding
calculation. The lobes of opposite signs are colored as blue (dark gray) and yellow
(light gray). The weights sitting at A sites have been encircled.

Ru-t2g Wannier functions for HRO and TRO, as defined in [Ref. [25] ] 〈r2〉n−〈r〉2n, where

〈r〉n = 〈0n|−→r |0n〉 and 〈r2〉n = 〈0n|r2|0n〉, |Rn〉 being the Wannier function in cell R for nth

(a1g, eπ,1
g , and eπ,2

g ) orbital. The spread provides the measure of the localization properties of

a given wave function. The calculated spreads for a1g, eπ,1
g , and eπ,2

g , for HRO, were obtained

as 3.52 Å2, 3.61 Å2, and 3.65 Å2, respectively, which were about 30%−35% larger than the

spreads obtained from TRO (2.45 Å2, 2.34 Å2, and 2.38 Å2, respectively). This, in turn, es-

tablishes the relatively delocalized character of Ru-d states in HRO, compared to that of TRO,

and validates the observation of significant reduction of Ru moment for HRO compound com-

pared to TRO. The magnetism is associated with the localized character and is maximum at

isolated atomic limit.
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Figure 6.7 GGA+U density of states, corresponding to Conf.c (see text for details).
The inset shows the arrangements of Ru spins corresponding to Conf.c, shown in the
kagome layer of the Ru pyrochlore lattice.

6.7 Total Energy Calculations and Magnetic Structure of

HRO

As is seen from Figs. 6.2 and 6.3, the spin-polarized DFT calculation gives rise to a metallic

solution for HRO in both GGA as well as GGA+U calculation. The relatively delocalized

nature of Ru-d orbitals in HRO makes the scenario of formation of spin singlets, as in case of

TRO [12], less plausible. The behavior of magnetic susceptibility below TMIT , alternatively,

can be interpreted as development of AFM long range order [9], as proposed in Ref. [16].

AFM interaction defined on Ru sublattice being frustrated, one may imagine this to give rise

to noncollinearity. The NMR study [16] predicted possible noncollinear magnetic structures

which are compatible with the NMR data. We have calculated total energies within GGA+U

considering the collinear FM, AFM, and FIM arrangement of Ru spins within a Ru4 tetrahe-
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Table 6.2 Total energies for different magnetic configurations of Ru spins in HRO.
Total energies (∆E) are measured with respect to the ferromagnetic (FM) configura-
tion. The other configurations considered are AFM, ferrimagnetic (FIM), and two
noncollinear configurations [Conf.b and Conf.c suggested in Figs. 7(b) and 7(c) of
Ref. [16], respectively].

1 2 3 4 5 ∆E (meV/Ru)

HRO TRO

FM + + + + 0 0

AFM - + + - -90 -50

FIM - + - - -70 -37

Conf.b -66 -40

Conf.c -100 -45

dra, together with possible noncollinear magnetic structures suggested based on NMR data in

Ref. [16]. The results are summarized in Table 6.2.

As is evident from the total energies listed in Table 6.2, the noncollinear configuration

(referred to as Conf.c), shown in the inset of Fig. 6.7, turned out to be the lowest energy mag-

netic structure. The GGA+U density of states corresponding to the lowest energy magnetic

structure is plotted in Fig. 6.7. The obtained magnetic moments are found to be 1.51 µB,

0.07 µB, and 0.0 µB at Ru, O, and O’ sites, respectively, in good agreement with the values

obtained for collinear spin arrangements (cf. Table 6.1). The realization of the lowest energy

magnetic structure opens up a gap of 0.1 eV. The precise magnitude of gap, of course, depends

on the applied U value. The development of long range magnetic order is, therefore, capable

of driving the insulating solution. The lowering of crystal symmetry has been indicated in ex-

perimental results [16], which may even help increase the gap value. The possible symmetries
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Table 6.3 The lattice coordinates and the relaxed ionic positions of trigonal phase
structure of HRO.

Space group: R3m, a=7.1892 Å, c=17.6381 Å

Atoms Multiplicity X Y Z

Hg1 3 0.5 0.0 0.0

Hg2 1 0.0 0.0 0.5

Ru1 3 0.5 0.0 0.5

Ru2 1 0 0 0

O1 2 0.0000 0.0000 0.3743

O2 6 -0.128329 0.128329 0.06119

O3 6 0.13075 -0.13075 0.19263

of the low temperature structure has recently been discussed in the literature, which will be

taken up in the following section.

6.8 Low Temperature Phase

Experimental study [Ref. [26]] indicates lowering of crystal symmetry from cubic to some

other upon lowering temperature. Recently, Ref. [27] suggested many possible low symmetry

structures for Hg2Ru2O7 - cubic (Fd3m), orthorhombic (Imma), and monoclinic (C2/m). The

authors concluded the monoclinic structure to be the low temperature phase for Hg2Ru2O7.

Study carried by group of Takagi et. al. [Ref. [28]] indicated stabilization of trigonal sym-

metry (R3m). Starting from the experimental crystal structures, we relaxed atomic positions

considering the low symmetry structures of monoclinic as well as trigonal symmetry keeping

the lattice parameters as measured experimentally. The lattice parameters and relaxed ionic

position coordinates of trigonal phase are given in the Table 6.3 and Table 6.4. The equiv-
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Table 6.4 The inequivalent sites with Wyckoff positions for both monoclinic and
trigonal phase (for a primitive cell) are given in the table.

Space group: C2/m Space group: R3m

Atoms Multiplicity Wyckoff Atoms Multiplicity Wyckoff

Hg1 2 f Hg1 3 e

Hg2 1 d Hg2 1 b

Hg3 1 b Ru1 3 d

Ru1 2 e Ru2 1 a

Ru2 1 a O1 2 c

Ru3 1 c O2 6 h

O1 4 j O3 6 h

O2 4 j

O3 2 i

O4 2 i

O5 2 i

alent Hg and Ru positions in high temperature phase split into the ratio 2:1:1 in monolcinic

symmetry and in the ratio 3:1 in trigonal symmetry.

There are three inequivalent Ru ions labeled as Ru1, Ru2 and Ru3 in monolinic phase

while two inequivalent Ru ions labeled as Ru1 and Ru2. Crystal structure analysis carried

on experimentally measured structures, before optimization, shows no volume difference be-

tween the Ru1O6, Ru2O6, and Ru3O6 octahedra in monolcinic phase and a large volume

difference between Ru1O6 and Ru2O6 of the order of 1.124 Å3 in trigonal symmetry. Af-

ter optimization in monoclinic phase the volumes of the Ru1O6 and Ru2O6 octahedra become
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Table 6.5 The total energy values of optimized structures calculated under GGA+U
approximation with the spin-polarized situation where three Ru spins are opposite to
the fourth Ru are given with respect to the energy value of high temperature cubic
phase (Fd3m) structure.

Cubic phase (Fd3m) Monoclinic phase (C2/m) Trigonal Phase (R3m)

0 0.668 -0.101

equal with a volume difference∼ 0.09 Å3 between Ru3O6 and Ru1O6/Ru2O6 as shown in Fig.

6.8. Very interestingly after ionic relaxation the difference in octahedral volume in monoclinic

phase is found to be comparable to that found in optimized trigonal phase. The octahedral vol-

ume difference in trigonal phase after optimization is found to be ∼ 0.1 Å3.

The analysis of the optimized structures of two different possible symmetries in low temper-

ature provides evidence of presence of RuO6 octahedra with different volumes. The results of

the T=0 K energy calculations of the optimized structures in the low temperature phase com-

pared with that of high temperature cubic phase is shown in the Table 6.5. It shows trigonal

symmtery is preferred as the symmetry of the ground state structure in the low temperature

phase of Hg2Ru2O7 which is lower in energy compared to the cubic phase which is the high

temperature phase. In the following we therefore discuss the electronic structure of Hg2Ru2O7

assuming trigonal symmetry of the crystal structure.

Study of the electronic density of states of Ru ions in optimized structure of the trigonal

phase, indicates the electronic structure of Ru1 and Ru2 d states to be different, as shown in

Fig. 6.9. The density of states are calculated under GGA+U approximation with U(Ru) =

3 eV and JH = 0.8 eV (cf. Fig. 6.9). The differential electronic structure of Ru1 and Ru2

is anticipated from the difference in volume of Ru1O6 and Ru2O6 octahedra. The magnetic

moments at Ru1 and Ru2 are found to be oppositely aligned with moments 1.90 µB and -1.63

µB.
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Figure 6.8 (a) The trigonal unit cell (R3m) for HRO (low temperature) with the ions
labeled in the figure. (b) The monoclinic unit cell (C2/m) of HRO (low temperature)
with ions labeled in the figure. (c) The left panel shows Ru1O6 and Ru2O6 octahedra
of trigonal phase before optimization and right panel shows octahedra after optimiza-
tion. Before optimization the volume of octahedra Ru1O6 is ∼ 9.70 Å3 and of octa-
hedra Ru2O6 ∼ 8.58 Å3 and after optimization volume of octahedra Ru1O6 is∼ 9.65
Å3 and of octahedra Ru2O6 is ∼ 9.55 Å3.(d) The left panel shows Ru1O6, Ru2O6
and Ru3O6 octahedra of monoclinic phase before optimization and right panel shows
octahedra after optimization. The volume of octahedra Ru1O6, Ru2O6, Ru3O6 be-
fore optimization are same ∼ 9.54 Å3 and after optimization volume of octahedra
Ru1O6, Ru2O6 (now JT distorted) ∼ 9.68 Å3 and of octahedra Ru3O6 is ∼ 9.60 Å3.
The black arrows show the increase and decrease of Ru-O bond lengths due to op-
timization and yellow arrow show the direction of distortion of the octahedra due to
change in bond length.

The difference in magnetic moment values as well as the electronic structure points towards

charge disproportionate situation between Ru1 and Ru2. The charge transfer between Ru1

and Ru2 is evident from the energy level diagram of Ru 4d levels calculated using NMTO-
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Figure 6.9 Electronic density of states for Ru1 4d states (black shaded region) and for
Ru2 4d states (violet colored line) exhibits completely different electronic structure
for Ru1 and Ru2 ions indicating the charge disproportionate situation.

downfolding method as shown in Fig. 6.10. From the energy level diagram shown in Fig.

6.10 clearly shows the charge flow from Ru2 to Ru1 d level which confirms the charge dispro-

portionation between Ru1 and Ru2. Further calculations are in progress to have a complete

understanding of the low temperature electronic structure [29].

6.9 Conclusion

In conclusion, we have carried out first principles study to investigate the electronic structure

of pyrochlore ruthenate HRO in comparison to that of TRO. Our study shows that Ru-d or-

bitals are much more delocalized for HRO compared to TRO. This indicates that the strongly
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Figure 6.10 The energy levels corresponding to Ru1-t2g state (left panel) and Ru2-t2g
state (right panel) are shown here. The red dotted line represents the center of gravity
of t2g band. The yellow arrow represents the charge flow from Ru2 site to Ru2 site
indicating charge disproportionate situation.

correlated electron picture may not be an appropriate one for HRO. The long range antiferro-

magnetic order is found to be sufficient to drive the insulating state for HRO, as opposed to

formation of a singlet ground state in TRO [12]. This interesting evolution in moving from

TRO to HRO happens as Ru-4d states lie at the verge of localized to itinerant character. A

modest increase of bandwidth in the case of HRO due to enhanced covalency between Ru-4d

and Hg-5d compared to that between Ru-4d and Tl-5d causes Ru-4d electrons in HRO to at-

tend much more itinerant character compared to that in TRO. Considering the probable low

temperature crystal structures we find signature of charge disproportionated situation. Our

findings justify the results of the NMR experiment [16] carried out on HRO.
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